RNATIONAL JOURNAL OF PHARMACY & PHARMACEUTICAL RESEARCH An official Publication of Human Journals

Human Journals **Research Article** May 2016 Vol.:6, Issue:2 © All rights are reserved by Rohit Bhor et al.

Synthesis and *In-Vitro* Antibacterial Activity of 2-Acetyl-4-Chlorophenyl 2, 3, 4, 5-Tetrafluorobenzoate Derivatives

*¹Department of Pharmaceutical Chemistry, PRES's
 College of Pharmacy Chincholi, Tal-Sinner, Dist-Nasik,
 422103, Maharashtra, India.

 Submission:
 29 April 2016

 Accepted:
 5 May 2016

 Published:
 25 May 2016

www.ijppr.humanjournals.com

Keywords: Anti-bacterial activity, Gentamycin, Pentafluorobenzoic acid, and 1-(5-chloro-2-hydroxyphenyl) ethanone

ABSTRACT

Chromones and Pyrazole derivatives were reported wide range of biological activities. Hence, it was planned to synthesize and screen for their antibacterial activity. A series of novel 2-Acetyl-4-Chlorophenyl 2, 5-Tetrafluorobenzoate 3, 4, derivatives were synthesized and evaluated for in-vitro antibacterial activity. Chromones and Pyrazole derivatives like 6-chloro-2-(2,3,4,5-tetrafluorophenyl)-4H-chromen-4-one, 4chloro-2-[5-(2,3,4,5-tetrafluorophenyl)-1*H*-pyrazol-3-yl]phenol were synthesized by a sequence of reactions starting 2-acetyl-4chlorophenyl 2,3,4,5-tetrafluorobenzoate and were mentioned in scheme 1. Antibacterial activities of chromones derivatives, pyrazole derivatives were tested by the disc diffusion method by using Mueller Hinton Agar (M173) medium against various microorganisms such as Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and Pseudomonas aeruginosa. Gentamycin at 100µg/ml were used as standard drugs for antibacterial activities. Characterization of the compounds was performed by IR, ¹H NMR and Mass spectrum. The compounds bearing nitro and oxygen groups have shown prominent activity when compared to compounds without these groups.

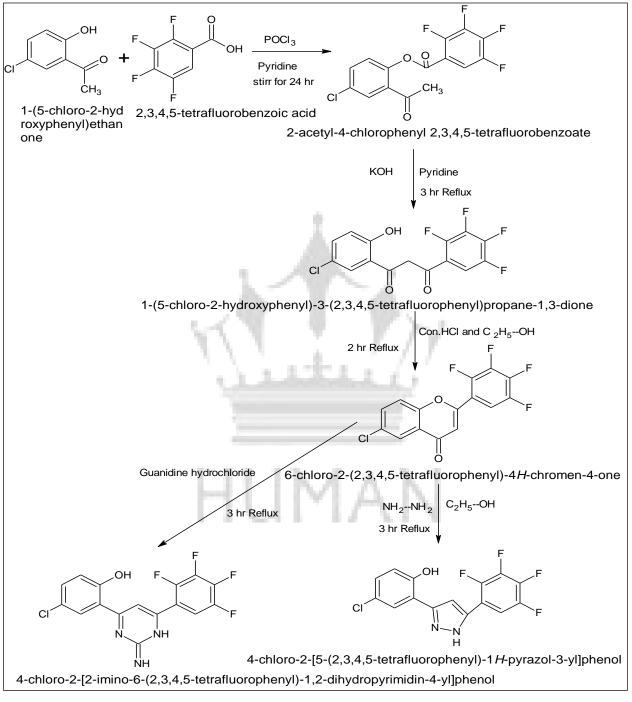
INTRODUCTION

Chromones and Pyrazole and its derivatives are important heterocyclic in organic and biochemistry. There are many Chromones containing natural products such as Khellin, sodium cromoglycate, diosmin, flavones, and flavonoids etc. Fungal and bacterial infections are affecting millions of people worldwide. Heterocyclic compounds containing N and O give a variety of biological activities; antimicrobial activity¹. Similarly, Chromones moiety constitutes the basic nucleus of flavones, which are most important and widespread natural product of plants and display a large number of biological activities. Some Chromones and Pyrazole derivatives are prepared by using and 1-(5-chloro-2-hydroxyphenyl) ethanone and 2, 3, 4, 5-Tetrafluorobenzoic acid reagent. These Pyrazole and Chromones derivatives are screened for antibacterial activity and antifungal activity. Chromones and Pyrazole give broad spectrum antimicrobial²⁻⁵, anti-inflammatory⁶, analgesic⁷, antitumorial⁸, activity such as antihypertensives⁹, anticonvulsant and antiviral¹⁰. There are antifungal and antibacterial agents having different structure and used in the treatment of fungal and bacterial infection. They are known to give variety of biological activities such as analgesic, anti-inflammatory, protein kinase C inhibitor¹¹. Many Pyrazole derivatives possess activity like Antiepileptic and Antimicrobial¹² Antiamoebic¹³ and Antiandrogenic activities¹⁴. Particularly, compound having both electron withdrawing groups such chloro and fluoro attached with Chromones ring and Pyrazole showed more inhibitory potential against fungal strains and bacterial strains than standard drug¹⁵.

MATERIALS AND METHODS

Materials

1-(5-chloro-2-hydroxy-4-methylphenyl) ethanone, 2, 3, 4, 5-Tetrafluorobenzoic acid, Pyridine, Hydrazine Hydrate, Guanidine Hydrochloride, Ethanol, Con.Hydrochloric acid and Phosphorus oxychloride i.e. POCl₃ were used for the synthesis of Chromones and Pyrazole. All chemicals were of analytical grade. All chemicals were of purchased from Modern Chemicals, Nashik and Atmaja Chemicals, Aurangabad.


Methods

All Chromones and Pyrazole derivatives were synthesized by conventional method. Melting points were determined by open tube capillary method. The purity of the compounds was checked on thin layer chromatography (TLC) plates (silica gel G) in chloroform: acetone (6:4) and chloroform: methanol (8:2) solvent systems, the spots were located under iodine vapors and UV light. IR spectra were obtained on a Perkin Elmer Spectrum1 FT-IR instrument (KBr pellets). Perkin Elmer Spectrum1 FT-IR instrument consists of globar and mercury vapor lamp as sources. ¹H-NMR spectra were recorded on a Bruker AVANCE III 500 MHz (AV 500) spectrometer using TMS as internal standard in DMSO-d₆/CDCl₃ and mass spectra was obtained on JEOL GCMATE II GC-MS is presented as m/z. The synthetic route for the title compounds is shown in Scheme 1.

Experimental work:

Chemistry: (Scheme I)

Scheme 1: Synthesis of 6-chloro-2-(2,3,4,5-tetrafluorophenyl)-4*H*-chromen-4-one (BH) and of 4-chloro-2-[5-(2,3,4,5-tetrafluorophenyl)-1*H*-pyrazol-3-yl]phenol (BI) derivatives (BF-BJ).

Synthesis of Chromones and Pyrazole derivatives ¹⁶⁻²¹:

Synthesis of 2-acetyl-4-chlorophenyl 2, 3, 4, 5-tetrafluorobenzoate (BF): (scheme 1)

A mixture of 1-(5-chloro-2-hydroxyphenyl) ethanone (0.5g) and 2, 3, 4, 5-Tetrafluorobenzoic acid (0.5g) react with each other in the presence of $POCl_3$ (5 ml) and Pyridine (15 ml) and then stir on magnetic stirrer for 24 hrs, and then it gives solid product after addition of ice cold water and it gives 2-acetyl-4-chlorophenyl 2,3,4,5-tetrafluorobenzoate (BF).

Synthesis of 1-(5-chloro-2-hydroxyphenyl)-3-(2, 3, 4, 5-tetrafluorophenyl) propane-1, 3dione (BG) :(Scheme 1)

A solution of 2-acetyl-4-chlorophenyl 2, 3, 4, 5-tetrafluorobenzoate (BF) reacted with potassium hydroxide (0.5g) and pyridine (5ml) and reflux for 3 hrs and then completion of the reaction was confirmed by TLC. The mixture was cooled by addition of ice. The precipitate formed was washed with water and recrystallized from ethanol and then it gives 1-(5-chloro-2-hydroxyphenyl)-3-(2, 3, 4, 5-tetrafluorophenyl) propane-1,3-dione (BG).

Synthesis of 6-chloro-2-(2, 3, 4, 5-tetrafluorophenyl)-4H-chromen-4-one (BH): (Scheme 1)

A solution of 1-(5-chloro-2-hydroxyphenyl)-3-(2, 3, 4, 5-tetrafluorophenyl) propane-1, 3-dione (BG) react with con. Hydrochloric acid (5ml) and ethanol (5ml), and reflux for 2 hrs and then completion of the reaction were confirmed by TLC. The mixture was cooled by addition of ice. The precipitate formed was washed with water and recrystallized from ethanol and then it gives 6-chloro-2-(2, 3, 4, 5-tetrafluorophenyl)-4*H*-chromen-4-one (BH).

Synthesis of 4-chloro-2-[5-(2, 3, 4, 5-tetrafluorophenyl)-1*H*-pyrazol-3-yl] phenol (BI): (Scheme 1)

A solution of 6-chloro-2-(2,3,4,5-tetrafluorophenyl)-4*H*-chromen-4-one (BH) reacts with hydrazine hydrate (5ml) and ethanol (10ml) and reflux for 3 hrs and then completion of the reaction were confirmed by TLC. The mixture was cooled by addition of ice. The precipitate formed was washed with water and recrystallized from ethanol and then it gives 2-[5-(2, 3, 4, 5-tetrafluorophenyl)-1*H*-pyrazol-3-yl] phenol (BI).

Synthesis of 4-chloro-2-[2-imino-6-(2, 3, 4, 5-tetrafluorophenyl)-1, 2-dihydropyrimidin-4-yl] phenol (BJ): (Scheme 1)

A solution of 6-chloro-2-(2, 3, 4, 5-tetrafluorophenyl)-4*H*-chromen-4-one (BH) react with guanidine hydrochloride (5ml) and it was refluxed for 3 hrs and then completion of the reaction was confirmed by TLC. The mixture was cooled by addition of ice. The precipitate formed was washed with water and recrystallized from ethanol and then it gives 4-chloro-2-[2-imino-6-(2, 3, 4, 5-tetrafluorophenyl)-1, 2-dihydropyrimidin-4-yl] phenol (BJ).

Characterization:

Sr. No	Compounds	Color of Compounds	Molecular Formula	Melting Point ⁰ C	% yields	Molecular Weight
1	BF	Yellow	$C_{14}H_7O_3F_4Cl$	312-314°C	80.95%	334
2	BG	Yellow	$C_{15}H_6O_3F_4Cl$	346-348°C	61.53%	345
3	BH	Yellow	$C_{15}H_5O_2F_4Cl$	318-320°C	74.46%	328
4	BI	Yellow	$C_{15}H_7ON_2F_4Cl$	352-354°C	76.92%	342
5	BJ	Yellow	$C_{16}H_8ON_3F_4Cl$	324-326°C	87.50%	369

 Table 1: Physical Data of 2-acetyl-4-chlorophenyl 2,3,4,5-tetrafluorobenzoate derivatives:

2-acetyl-4-chlorophenyl 2, 3, 4, 5-tetrafluorobenzoate (BF):

% yield: 80.95%; Melting point (0 C) : 312-314°C; R_f Value: 0.92 chloroform: methanol (8:2); FTIR (KBr) v cm⁻¹ : 3080 (Ar C-H), 1644 (Ar C=C), 881 (Ar C-H def), 1260 (Ar C-F), 726 (Ar C-Cl), 1751 (Ester C=O), 1319 (C-O); ¹H NMR (500 MHz CDCl3 δ ppm) : 7.93-8.11 (m, 3H, aromatic protons), 2.50 (s, 3H, CH₃), 7.53 (m, 1H, aromatic protons); JEOL GCMATE II GC-MS (m/z) : 333 (M⁺), 334 (M⁺+1), Mol. Wt.:334.

1-(5-chloro-2-hydroxyphenyl)-3-(2, 3, 4, 5-tetrafluorophenyl)propane-1,3-dione (BG):

% yield: 61.53%; Melting point (0 C) : 346-348°C; R_f Value: 0.83 chloroform: methanol (8:2); FTIR (KBr) v cm⁻¹ : 1529 (Ar C=C), 844 (Ar C-H def), 1167 (Ar C-F), 680 (Ar C-Cl), 1639 (Aryl Ketone C=O), 1218 (C-O), 3622 (Ar OH); ¹H NMR (500 MHz CDCl3 δ ppm): 3.81(s,

2H, CH₂), 5.35 (s, 1H, OH), 7.00-7.69 (m, 3H, aromatic protons), 7.25 (m, 1H, aromatic protons); JEOL GCMATE II GC-MS(m/z): 377(M⁺), 378 (M⁺+1), Mol. Wt.:378.

6-chloro-2-(2, 3, 4, 5-tetrafluorophenyl)-4*H*-chromen-4-one (BH):

% yield: 74.46%; Melting point (0 C) : 318-320°C; R_f Value: 0.89 chloroform: methanol (8:2); FTIR (KBr) v cm⁻¹ : 3061 (Ar C-H), 1568 (Ar C=C), 834 (Ar C-H def), 1171 (Ar C-F), 652 (Ar C-Cl),1719 (Aryl Ketone C=O), 1349 (C-O); ¹H NMR (500 MHz) CDCl3 δ ppm: 7.77-8.07 (m, 3H, aromatic protons), 6.54 (s, 1H, CH₂), 7.25 (m, 1H, aromatic protons); JEOL GCMATE II GC-MS (m/z): 327 (M⁺), 328 (M⁺+1) Mol. Wt.:328.

4-chloro-2-[5-(2, 3, 4, 5-tetrafluorophenyl)-1*H*-pyrazol-3-yl] phenol (BI):

% yield: 76.92%; Melting point (0 C): 352-354°C; R_f Value: 0.9 chloroform: methanol (8:2); FTIR (KBr) v cm⁻¹ : 3032 (Ar C-H str), 1657 (Ar C=C), 758 (Ar C-H def), 1155 (Ar C-F), 729 (Ar C-Cl), 3449 (Ar OH), 1347 (C-O), 3336 (N-H); ¹H NMR (500 MHz CDCl3 δ ppm): 7.85-7.98 (m, 3H, aromatic protons), 5.35 (s, 1H, O-H), 6.81 (s, 1H, C-H),12.62 (s, 1H,N-H), 7.25 (m, 1H, aromatic protons JEOL GCMATE II GC-MS (m/z): 341 (M⁺), 342 (M⁺+1). Mol. Wt.:342.

4-chloro-2-[2-imino-6-(2, 3, 4, 5-tetrafluorophenyl)-1,2-dihydropyrimidin-4-yl]phenol (BJ):

% yield: 87.50%; Melting point (0 C): 324-326°C; R_f Value: 0.88 chloroform: methanol (8:2); FTIR (KBr) v cm⁻¹ : 3028 (Ar C-H), 1656 (Ar C=C), 768 (Ar C-H def), 1273 (Ar C-F), 710 (Ar C-Cl), 3449 (Ar OH), 1320 (C-O), 3385 (N-H); ¹H NMR (500 MHz CDCl3 δ ppm): 6.96-7.74 (m, 3H, aromatic protons), 5.35 (s, 1H, O-H), 6.81 (s, 1H, C-H), 13.86 (s, 1H,N-H), 13.76 (s, 1H,N-H), 6.69 (m, 1H, aromatic protons); JEOL GCMATE II GC-MS (m/z): 368 (M⁺), 369 (M⁺+1). Mol. Wt.:369.

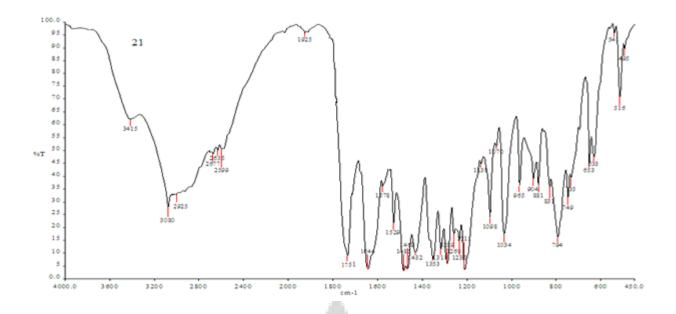


Fig. 1: FTIR (KBr) v cm⁻¹ of 2-acetyl-4-chlorophenyl 2,3,4,5-tetrafluorobenzoate (BF)

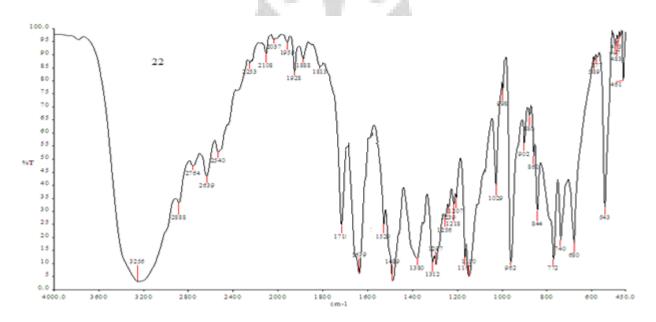


Fig. 2: FTIR (KBr) v cm⁻¹ of 1-(5-chloro-2-hydroxyphenyl)-3-(2,3,4,5-tetrafluorophenyl) propane-1,3-dione (BG)

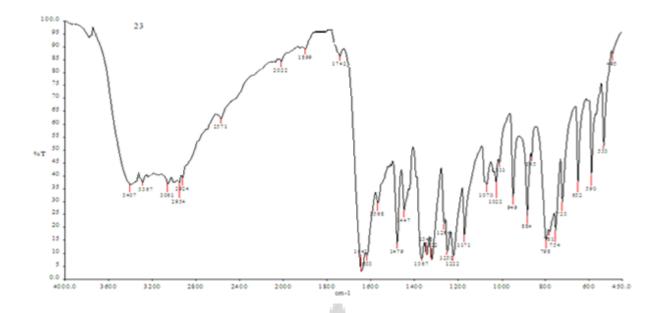


Fig. 3: FTIR (KBr) v cm⁻¹ of 6-chloro-2-(2, 3, 4, 5-tetrafluorophenyl)-4*H*-chromen-4-one

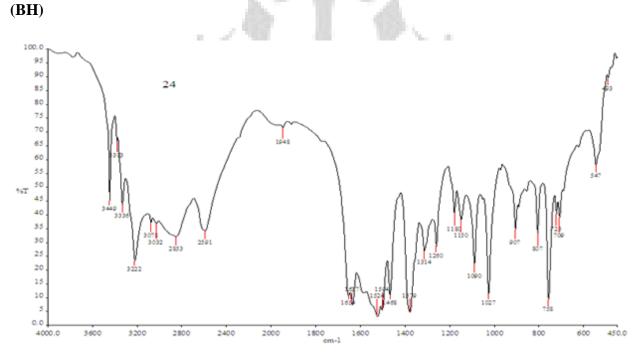


Fig. 4: FTIR (KBr) v cm⁻¹ of 4-chloro-2-[5-(2,3,4,5-tetrafluorophenyl)-1*H*-pyrazol-3-yl] phenol (BI)

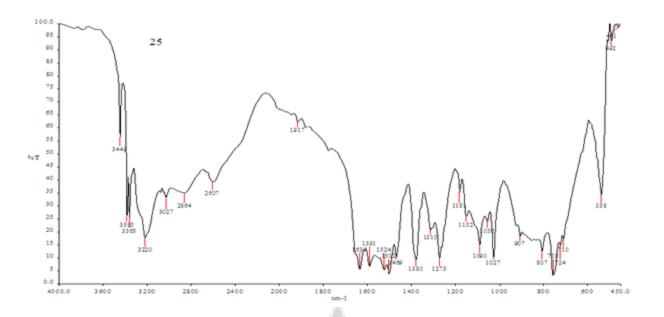


Fig. 5: FTIR (KBr) v cm⁻¹ of 4-chloro-2-[2-imino-6-(2,3,4,5-tetrafluorophenyl)-1,2dihydropyrimidin-4-yl]phenol (BJ)

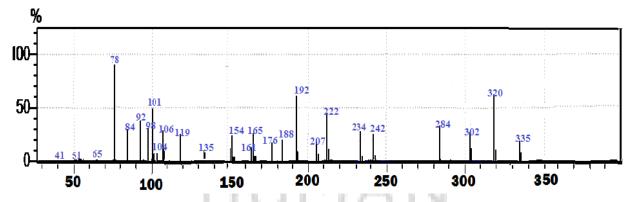


Fig. 6: Mass spectrum of 2-acetyl-4-chlorophenyl 2,3,4,5-tetrafluorobenzoate (BF)

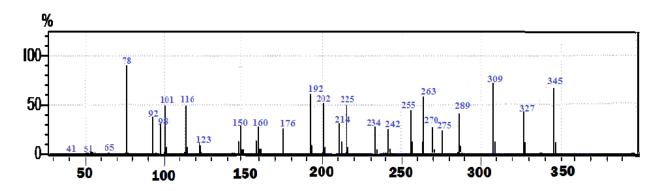


Fig. 7: Mass spectrum of 1-(5-chloro-2-hydroxyphenyl)-3-(2,3,4,5-tetrafluorophenyl) propane-1,3-dione (BG)

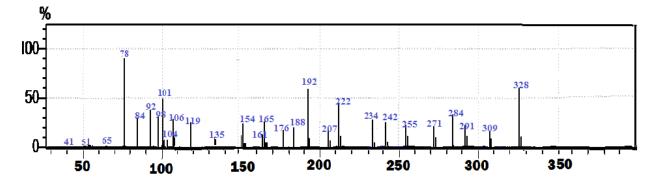


Fig. 8: Mass spectrum of 6-chloro-2-(2,3,4,5-tetrafluorophenyl)-4*H*-chromen-4-one (BH)

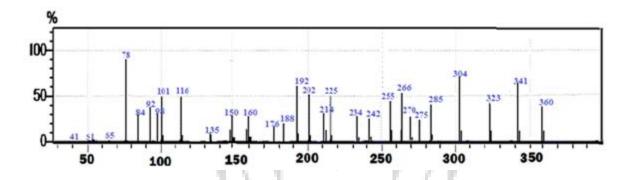


Fig. 9: Mass spectrum of 4-chloro-2-[5-(2,3,4,5-tetrafluorophenyl)-1*H*-pyrazol-3-yl]phenol (BI)

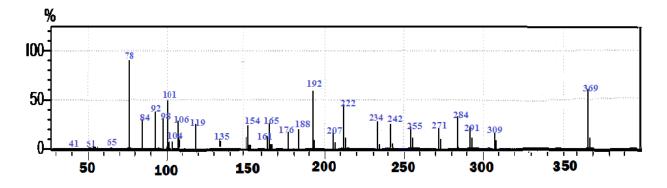


Fig. 10: Mass spectrum of of 4-chloro-2-[2-imino-6-(2,3,4,5-tetrafluorophenyl)-1,2dihydropyrimidin-4-yl]phenol (BJ)

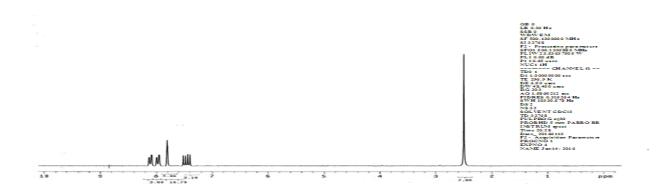


Fig. 11: ¹H-NMR of 2-acetyl-4-chlorophenyl 2,3,4,5-tetrafluorobenzoate (BF)

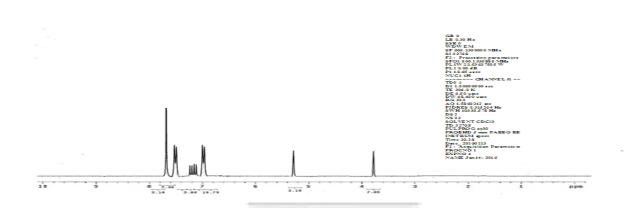


Fig. 12: ¹H-NMR of 1-(5-chloro-2-hydroxyphenyl)-3-(2,3,4,5-tetrafluorophenyl)propane-1,3-dione (BG)

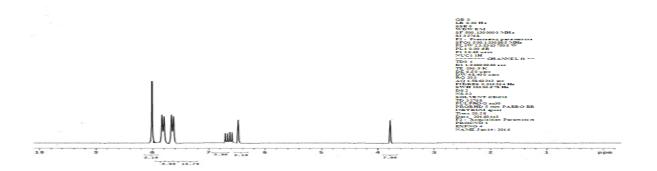


Fig. 13: ¹H-NMR of 6-chloro-2-(2,3,4,5-tetrafluorophenyl)-4*H*-chromen-4-one (BH)

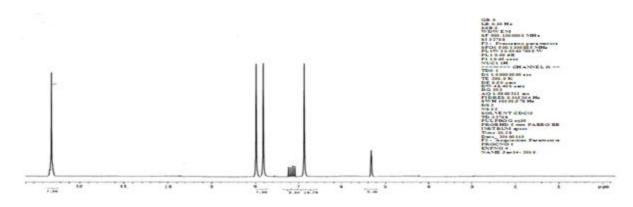
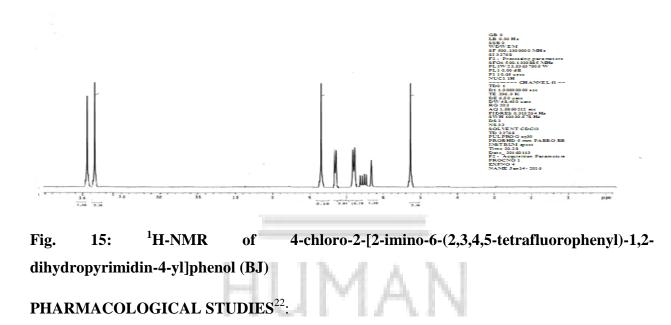



Fig. 14: ¹H-NMR of -chloro-2-[5-(2,3,4,5-tetrafluorophenyl)-1*H*-pyrazol-3-yl]phenol (BI)

In vitro Antibacterial activity by disc diffusion method:

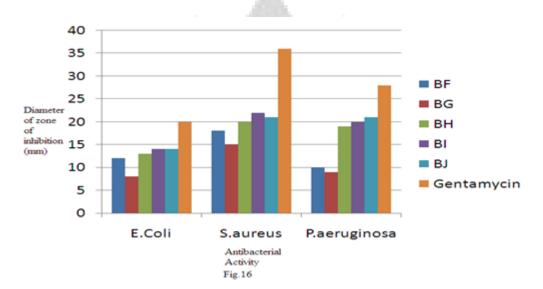
i) Antibacterial Activity:

The compounds like BF to BJ were evaluated for their *in vitro* antibacterial activity against various microorganisms such as gram positive *Staphylococcus aureus*, gram-negative *Escherichia coli* and *Pseudomonas aeruginosa* by *in vitro* method like disc diffusion method was performed using Mueller Hinton Agar (M173) medium. Each compound was tested at concentration 100µg/mL in DMSO. The zone of inhibition was measured after 24 h incubation at 37°C. Standard: Gentamycin (100µg/mL of DMSO).

	Diameter of zone of inhibition (mm)					
Compound No.	Escherichia coli	Staphylococcus aureus	Pseudomonas aeruginosa			
	ATCC 25922	ATCC 25923	ATCC 27853			
BF	12	18	10			
BG	08	15	09			
BH	13	20	19			
BI	14	22	20			
BJ	14	21	21			
Gentamycin	20	36	28			

 Table 2- Antibacterial activity screening result of synthesized compound measuring the zone of inhibition in millimeter

RESULTS AND DISCUSSION


The syntheses of compounds BF- BJ were undertaken as per the scheme 1. The required 2acetyl-4-chlorophenyl 2,3,4,5-tetrafluorobenzoate (BF) was prepared by the action of 1-(5chloro-2-hydroxyphenyl) ethanone and 2, 3, 4, 5-Tetrafluorobenzoic acid. IR spectra were obtained on a Perkin Elmer Spectrum1 FT-IR instrument (KBr pellets). Perkin Elmer Spectrum1 FT-IR instrument consists of globar and mercury vapor lamp as sources. ¹H-NMR spectra were recorded on a Bruker AVANCE III 500 MHz (AV 500) spectrometer using TMS as internal standard in DMSO-d₆/CDCl₃ and mass spectra was obtained on JEOL GCMATE II GC-MS is presented as m/z.

Sector.

The results revealed that most of the synthesized compounds showed varying degrees of inhibition against the tested microorganisms. In general, the inhibitory activity against the tested gram-positive bacteria was higher than that of the gram-negative bacteria. Moreover, the compounds like BH, BI and BJ having the side chain showed higher activity than BF and BG against *S. aureus* and *Pseudomonas aeruginosa*. The replacement of oxygen to nitrogen resulted in a slightly increased antimicrobial activity. Our study revealed that all the compounds had

stronger antibacterial activity against Gram-positive bacteria when compared to Gram-negative bacteria. Antimicrobial activity revealed that newly synthesized compound BH, BI and BJ showed good significant activity. The results of the preliminary antimicrobial testing of the prepared compounds, the typical broad spectrum antibacterial drug like Gentamycin was shown in Table 2.

The synthesized compounds were screened for their antibacterial activity as showed in Fig.16. The derivatives like BH, BI and BJ showed highly active compound against *E. coli, Staphylococcus aureus* and *Pseudomonas aureus*. BH showed moderately active compound against *E. coli* and *S. aureus*. BI and BJ showed moderately active compound against *E. coli* and *S. aureus*. BI and BJ showed moderately active compound against *E. coli* and *S. aureus*. Standard (Gentamycin) showed highly active against *E. coli, Pseudomonas aeruginosa* and *S. aureus*.

CONCLUSION

Various 2-acetyl-4-chlorophenyl 2,3,4,5-tetrafluorobenzoate derivatives (BF) was synthesized from the action of 1-(5-chloro-2-hydroxyphenyl) ethanone and 2, 3, 4, 5-Tetrafluorobenzoic acid. The structure antibacterial activity relationship of the synthesized compounds was based on the structure of final derivatives. These derivatives possess good antibacterial activity. Antimicrobial activities including antibacterial properties of the synthesized derivatives showed a significant activity as compared with standard drugs like Gentamycin.

ACKNOWLEDGEMENT

The authors are thankful to Dr. V.D.Wagh, College of Pharmacy, Chincholi, Mr. Vikas Kunde and BAC-Test Laboratory in Nashik for providing necessary facilities and to carry out this work and *in-vitro* antibacterial activity.

REFERENCES

1. J. A. Joule and K. Mills Heterocyclic Chemistry, Backwell publisher, Germany, 4th edition, 2000; 237,255.

2. R. K. Bansal, Heterocyclic Chemistry, New age international publisher, New Delhi, 4th edition, 2008; 152-159.

3. V. K. Ahluwalia R. K. Parashar, Organic Reaction Mechanism, Narosa publishing house, New Delhi, 3rd edition, 2007; 361.

4. M. S. Mohamed et al. Synthesis of certain pyrrole derivatives as antimicrobial agent, *Acta pharm*.2009; 59, 145-158.

5. M. S. Mohamed et al. New condensed pyrrole of potential biological interest Synthesis and structure

6. activity relationship studies, European Journal of Medicinal chemistry, 2011; 46, 3022-3029.

7. Ming-Chang P. Yeh, Synthesis of Pyrrole Derivatives Mediated by Dicobalthexacarbonyl, Tetrahedron Letters, Vol. 36, No. 16, pp. 2823-2826, 1995.

8. Prativa B. S. Dawadi, Synthesis of Biologically Important Pyrrole Derivatives in Any 13C and 15N Isotope

9. Enriched Form, Global Journal of Science Frontier Research Chemistry Volume 12 Issue 2 Version 1.0 February 2012,24-36.

10. Jamal Abdul Nasser, Synthesis of some new pyrrole derivatives and their antimicrobial activity, Der Pharma Chemica, 2011, 3 (4): 210-218

11.M. A. Chowdhury, et al. (2008), Synthesis of new 4-[2-(4-methyl (amino) sulfonylphenyl)-5-trifluoromethyl-2H-pyrazol-3-yl]-1,2,3,6-tetrahydropyridines: A search for novel nitric oxide donor anti-inflammatory agents,

12. Bioorganic & Medicinal Chemistry, 16, pp.8882-8888

13.M. A. Chowdhury, et al. (2008), Synthesis of new 4-[2-(4-methyl (amino) sulfonylphenyl)-5-trifluoromethyl-2H-pyrazol-3-yl]-1,2,3,6-tetrahydropyridines: A search for novel nitric oxide donor anti-microbial agents, *Bioorganic & Medicinal Chemistry*, 16, pp.8882–8888

14.B. C. Daniel, et al. (2008), Non-steroidal Anti-microbial Agents – Benefits and New Developments for Cancer Pain, *Supportive Oncology*, pp. 18-22.

15. J.E Downing, et a.1 (2005) Gastric and thymic assay of acute oral treatment of rats with nitric oxide esters of Gentamycin or indomethacin, *Biochem. Biophys. Res. Commun.*

16.O. O. Fadeyi, et al (2004) Antipyretic, analgesic, anti-inflammatory and antimicrobial effects of four derivatives of salicylic acid and anthranilic acid in mice and rats, *African Journal of Biotechnology*, 3(8), pp. 426-431

17.S. Fiorucci, J. L. Wallace, R. N. Dubois, et al.(2000) New antimicrobial agents: NO-NSAIDS and COX-2 inhibitors. *International conference on "Advances In Prostaglandin and Leukotriene Research: Basic Science and New Clinical Applications"*, June (4-8), pp. 2.

18.S. Fioruccia, *et al.* (2007), Antibiotic drug, CINOD and H2S-releasing NSAIDs: What lies beyond the horizon, *Digestive and Liver Disease*, 39, pp. 1043–1051.

19.S. Fioruccia, *et al.*(2004) Cooperation between 2-(Acetyloxy) benzoic acid 3-(nitrooxymethyl) phenyl ester (NCX-4016) Nitric oxide aspirin on neutrophile endothelial cell dherence, *The Journal of Pharmacology and Experimental Therapeutics*, 306, pp.1174-1182

20. W. (Foye, 2009,) Principles of Medicinal Chemistry. New Delhi: B. J. Waverly Pvt. Ltd., 4, pp.-1021-1023.

21. J.F. Gilmer, et al. (2001) Synthesis, hydrolysis kinetics and antimicrobial effects of isosorbide mononitrate derivatives of Gentamycin, *Euopean journal of Pharmaceutical Sciences*, 14, pp. 221-7.

22. R. A. Khaled, et al. (2007) Novel (E)-2-(aryl)-3-(4-methanesulfonylphenyl)acrylic ester prodrugs possessing a diazen-1-ium-1,2-diolate moiety: Design, synthesis, cyclooxygenase inhibition, and nitric oxide release studies, *Bioorganic & Medicinal Chemistry*, 15, pp. 6796–6801.

HUMA