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ABSTRACT  

A mathematical model to describe the concentration of profiles 

and flux for potentiometric and amperometric enzyme 

electrodes and of enzyme reactors has been developed. This 

model contains a non-linear term related to Micahlies-Menten 

kinetics. Analytical expressions pertaining to the substrate 

concentration and product concentration were reported for all 

values of parameters PS  ,
 and  . In this work, we report 

the theoretically evaluated steady state current for short and 

small values of saturation parameter   and reaction-diffusion 

parameters PS  ,
. This is done by using Adomian 

decomposition method. These analytical results were found to 

be in good agreement with numerical results.  
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1. INTRODUCTION 

A biosensor is an analytical device that inverts a biochemical reaction process into a measurable 

signal using transducer [1–3]. Biosensors can be used for detecting various substances like 

pollutants, metabolites, microbial load, etc. Usually, a biosensor consists of two elements: a 

biological sensing element and a transducer for detecting the analyte concentration. Biosensors 

have a lot of advantages compared to usual biological methods of analysis - biosensors are small, 

simple to use, radioactivity proof, etc. These characteristics make them attractive to use [4]. 

An electrochemical biosensor, when biochemical reactions between an immobilized biomolecule 

and target analyte produce or consume ions or electrons, which affects the measurable electric 

current [5]. Electrochemical biosensors are divided into amperometric and potentiometric ones. 

Amperometric biosensors are most widely used, they are very sensitive and more suitable for 

mass production than the potentiometric ones [6–10]. The amperometric biosensor is an 

electronic signal converter with biochemically active substance usually an enzyme. The 

operation of the amperometric biosensors is based on calculating the Faraday current, which is 

calculated while the current at the electrode is set constant. The current arises because of the 

oxidation or reduction of the product [11–13]. Generally, the process is modeled using Michael-

Menten kinetic equations. 

As biocatalytic reaction rates are often chosen to be first order dependent on the bulk analyte 

concentration, such steady-state currents are usually proportional to the bulk analyte 

concentration. Potentiometric measurements involve determination of the potential difference 

between either an indicator or a reference electrode [14], or two reference electrodes separated 

by a perm selective membrane when there is no significant current flowing between them. The 

transducer may be an ion-selective electrode (ISE), which is an electrochemical sensor based on 

thin films or selective membranes as recognition elements Buck and Lindner, 1994 [15]. 

The most common potentiometric devices are pH electrodes; the potential differences between 

these indicator and reference electrodes are proportional to the logarithm of the ion activity or 

gas fugacity (or concentration), as described by the Nernst-Donnan equation. This is only the 

case when the membrane or layer selectivity is infinite or if there is a constant or low enough 

concentration of interfering ions; and potential differences at various phase boundaries are either 
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negligible or constant, except at the membrane: sample-solution boundary. When a biocatalyst 

layer is placed adjacent to the potentiometric detector, one has to take into account of, as for any 

biocatalyst sensor:  transport of the substrate to be analyzed to the biosensor surface; analyte 

diffusion to the reacting layer; analyte reaction in the presence of biocatalyst and diffusion of 

reaction product towards both the detector and the bulk solution. Morf presented a relatively 

simple approach for the electrode response that applies to the whole range of substrate 

concentrations by obtaining an explicit result and also he described the principles theoretical 

treatment and numerical simulation of potentiometer and amperometric enzyme electrodes and 

of enzyme reactors [16].   

To my knowledge no rigorous analytical solutions for non-linear steady state concentration and 

flux for potentiometric and amperometric enzyme electrodes for all values of PS  ,  and   

have been reported. It should be pointed out that, complete solutions have not yet been obtained 

even for steady state behavior because of the nonlinearity inherent in Michalies-Menten kinetics. 

In this paper, we have derived new, simple analytical expressions of concentration and current in 

order to describe and evaluate the performances of potentiometric and amperometric enzyme 

electrodes using Adomian decomposition method. 

2. Mathematical formulations of analysis and problems 

In this system, the substrate molecules diffuse into the membrane phase where they react 

according to the Michalies- Menten type reaction in Eq. (4) to yield the product P:      

                                                                              (4) 

1

32

k

kk
K M


                                                                                                              (5) 

Where, ES is the intermediate enzyme-substrate complex,  21  , kk  and 3k  are the rate constants of 

the respective partial reactions, and MK  is the Michalies constant [17] defined in Eq. (5) [18. 

Space and time-dependent influences of diffusion and reaction processes in the enzyme 
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membrane are described by Eqs. (6-9), which are valid for the species, PS   and   respectively 

[18]: 
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Where,  totE  is the total enzyme concentration,    emem PS , .are the concentrations of the 

species in the enzyme membrane, v  is the number of products species obtained per substrate 

molecule. Eqs. (6) and (7) are solved for the following boundary conditions by assuming the zero 

fluxes at 0x  and of equilibrium distribution at dx  . The boundary conditions are 
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For enzyme reactors, the outward flux of product species at x = d is described by: 
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We introduce the following dimensionless parameter as: 

 
 

 
 

 
 ) 11( 

][
,  ,,  ,,, 3

2

P

2

M

tot

PS

S

M

aqs

aqs

em

aqs

em

K

Ek

D

kd

D

kd

K

Sk

d

x

Sk

P
P

Sk

S
S                                                                                              

The above non-linear ordinary differential equations (Eqs. (6-10)) in dimensionless form  
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The corresponding boundary conditions are 

0,0,0  
 d

dP

d

dS
                                                                                (14) 

1,,1  mPS                                                                                  (15)         

The dimensionless current is given by 
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3. Solution of the boundary value problem using the Adomian decomposition method  

In the recent years, much attention is devoted to the application of the Adomian decomposition 

method to the solution of various scientific models [19]. An efficient modification of the 

standard adomian decomposition method for solving singular initial value problem in the second 

order ordinary differential equation. The ADM yields, without linearization, perturbation, 

transformation or discretization, an analytical solution in terms of a rapidly convergent infinite 

power series with easily computable terms. The decomposition method is simple and easy to use 

and produces reliable results with little iteration used. The results show that the rate of 

convergence of Adomian decomposition method is higher than standard Adomian decomposition 

method [20-24]. Using this method (see appendix A), we can obtain the analytical expression of 

concentrations as follows: 
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Equations (17-18) are the analytical solutions for the dimensionless concentrations as a function 

of dimensionless distance r . The current density is given by  
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Equation (19) represents the new approximate analytical expression for the current for short and 

small values of saturation parameter   and reaction-diffusion parameters PS  , .  

4. NUMERICAL SIMULATION 

The non-linear differential equations (Eqs (12) and (13)) for the boundary conditions (Eqs (14) 

and (15)) are also solved numerically. We have used the function pdex4 in MATLAB software to 

solve numerically the initial-boundary value problems for the nonlinear differential equations. 

This numerical solution is compared with our analytical results in Figs (1) to (5). Upon 

comparison, it gives a satisfactory agreement for all values of the dimensionless parameters, 

PS  ,  and  . The MATLAB program is also given in appendix B. 

5. RESULTS AND DISCUSSION 

The primary result of this work is the first accurate calculation of steady state concentration of 

substrate (or product) and current for all values of PS  ,  and    for potentiometric response of 

enzyme electrode system. The concentrations )(rS  are represented in Figs. 1(a) –(b) and 2(a)–

(b). From these figures, it is evident that the value of concentration gradually increases as the 

saturation parameter   increases. The concentration increases as the distance increases and 

attains the maximum value 1. Figure 3 represent the concentration profile of )(rP . It is clear that 

as reaction-diffusion parameter P  increases the value of dimensionless concentration )(rP  is 

also increased. Fig 4 represents the saturation parameter    decreases the value of concentration  

)(rP  is also increased. The analytical expression for dimensionless current is given in Eq. (16). 

The dimensionless current J  versus substrate molecule v  is given in Fig. 5. The value of the 

current increases when substrate molecule v  increases and P  decreases. In Fig. 6, the value of 

current increases when saturation parameter   decreases.    
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6. CONCLUSION 

The steady state potentiometric response for an enzyme electrode system which exhibits 

Michalies-Menten kinetics has been discussed. Approximate analytical solution to the nonlinear 

reaction-diffusion equation has been presented using Adomian decomposition method. A simple 

and a new method for estimating the concentration of substrate or product and the corresponding 

current for all values of  vPS and,,    has been suggested. The solution procedure can be 

easily extended to all kinds of non-linear equations with various complex boundary conditions in 

enzyme-substrate reaction-diffusion processes. 

 

Fig. 1 (a): Normalized concentration profile  as a function of dimensionless parameter 

r . The concentrations were computed using Eq. (17) for various values of the   and for the 

fixed values of 5.0S , (—) denotes Eq. (17) and (…) denotes the numerical simulation. 

)(rS
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Fig. 1(b): Normalized concentration profile )(rS  as a function of dimensionless parameter r . 

The concentrations were computed using Eq. (17) for various values of the   and for the fixed 

values of 5S , (—) denotes Eq. (17) and  (…)  denotes the numerical simulation. 

                                      

Fig. 2(a): Normalized concentration profile )(rS  as a function of dimensionless parameter r . 

The concentrations are computed using Eq. (17) for various values of the S  and for the fixed 

values of 1 . (—) denotes Eq. (17) and (…) denotes the numerical simulation. 
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Fig. 2(b): Normalized concentration profile )(rS  as a function of dimensionless parameter r . 

The concentrations are computed using Eq. (17) for various values of the S  and for the fixed 

values of 20 . (—) denotes Eq. (17) and (…) denotes the numerical simulation. 

 

Fig. 3: The dimensionless concentration )(rP  versus the dimensionless distance r  for various 

values of  P  and some fixed value of  ,,, Svm . The concentrations were computed using 

Eq. (18). The key to the graph: (….) represents the Eq. (18) and (—) represents the numerical 

simulation.  
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Fig. 4:  The dimensionless concentration )(rP  versus the normalized distance r  for various 

values of    and some fixed value of PSvm  ,,, . The concentrations were computed using 

Eq. (18). The key to the graph: (….) represents the Eq. (18) and (—) represents the numerical 

simulation. 

 

Fig. 5: The normalized current J versus substrate molecule v  using Eq. (19) for various values 

of reaction-diffusion parameter P  and fixed values of 5,001.0  S .         
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Fig. 6: Variation of normalized current J versus saturation parameter   using Eq. (19) for 

various values of reaction-diffusion parameter P  and fixed values of  5,10  S .                  

Appendix A 

Adomian decomposition method [28-32] depends on the non-linear differential equation  

0))(,( xyxF                                                                                                  (A1) 

into the two components  

0))(())((  xyNxyL                                                                                      (A2) 

Where, L and N are the linear and non-linear parts of   F respectively. The operator L is assumed 

to be an invertible operator. Solving for )(yL  leads to  

)()( yNyL                                                                                                   (A3) 

Applying the inverse operator L on both sides of Eq. (A3) yields 

),())((1 xyNLy                                                                                       (A4) 
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Where, )(x  is the constant of integration which satisfies the condition .0)( L  Now assuming 

that the solution y  can be represented as infinite series of the form  







0n

nyy                                                                                                       (A5) 

Furthermore, suppose that the non-linear term )(yN  can be written as infinite series in terms of 

the Adomian polynomials  nA  of the form  
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Where, the Adomian polynomials nA  of )(yN  are evaluated using the formula: 
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Then substituting Eqns. (A5) and (A6) in Eq. (A4) gives 
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Then equating the terms in the linear system of Eq. (A8) gives the recurrent relation  

)()( 1

10 nn ALyxy 

                                            0n                           (A9) 

However, in practice all the terms of series in Eq. (A7) cannot be determined, and the solution is 

approximated by the truncated series


0n

ny . This method has been proven to be very efficient in 

solving various types of non-linear boundary and initial value problems. 

Appendix B 

Scilab/ Matlab program to find the numerical solution of Eqs. (12-15): 

function pdex4 
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m = 0; 

x = linspace(0,1); 

t=linspace(0,1000); 

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 

u1 = sol(:,:,1); 

u2 = sol(:,:,2); 

figure 

plot(x,u1(end,:)) 

title('u1(x,t)') 

xlabel('Distance x') 

ylabel('u1(x,2)') 

plot(x,u2(end,:)) 

title('u2(x,t)') 

xlabel('Distance x') 

ylabel('u2(x,2)') 

function [c,f,s] = pdex4pde(x,t,u,DuDx) 

c = [1; 1];  

f = [1; 1] .* DuDx;  

alpha=5; 

y = (u(1)/(1+alpha*u(1))); 

gamma=100;  

gamma1=1; 

v=1.5; 

F =(-gamma*y); 

F1 =(v*gamma1*y); 

s=[F;F1]; 

function u0 = pdex4ic(x);                                                      

u0 = [1; 0];  

function[pl,ql,pr,qr]=pdex4bc(xl,ul,xr,ur,t)                        

pl = [0; 0];  

ql = [1; 1];  
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pr = [ur(1)-1; ur(2)-0.5];  

qr = [0; 0];       

Appendix C 

Nomenclature and units   

__________________________________________________________________ 

Symbol                                         Mean ing                              Usual dimension    

__________________________________________________________________   

     v                             No of product species                                         none 

 SD                              Diffusion Coefficient of the substrate               12 seccm   

PD                               Diffusion Coefficient of the product                12 seccm   

 MK                              Michalies constant                                            
-3cm mole  

 3k                                 Rate constant for irreversible step                    
1sec       

                                   Saturation parameter                                          none 

PS  ,                        Reaction-diffusion parameters                             none 

 emS                             Concentration of the substrate                         
-3cm mole  

 emP                          Concentration of the product                            
-3cm mole  

 aqS                           Concentration of substrate in the sample         
-3cm mole  

 aqP                          Concentration of substrate in the product         
-3cm mole  

   x                                Distance                                                              cm      

    r                              Dimensionless distance                                     none 

  S, P                            Dimensionless substrate concentrations           none 

 m                                Dimensionless substrate concentration             none 

                                      at particle surface                                      

__________________________________________________________________ 
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