

KINETICS AND MECHANISM OF OXIDATION OF L-VALINE BY TRI BUTYL AMMONIUM CHLORO CHROMATE IN ACID MEDIUM

Prabhkar Kute^{1*}, Sayyed Hussain²

1 Department of Chemistry, PratishthanMahavidyalayaPaithan, Aurangabad – 431107 (M.S) India.

2 P.G.Dept. of Chemistry, Sir Sayyed College of Arts, Commerce & Science, Aurangabad -431001 (M.S.) India.

ABSTRACT

The kinetics of the oxidation of L-valine by tributyl ammonium chlorochromate (TriBACC) in acid medium was studied spectrophotometrically at 445 nm. Analysis of the kinetic result revealed that the rate of oxidation was first order in TriBACC and inverse first order in both L-valine and sulphuric acid. The reaction between oxidant and L-valine acid medium exhibit 1:1 stoichiometry. Variation of ionic strength had no significant effect on the rate. The reaction was investigated at different temperatures and the activation parameters were calculated. The main product was identified as the carbonyl compound by spot test. A plausible mechanism was proposed to explain the results of kinetic studies, reaction stoichiometry and product analysis.

Keywords: Kinetics, Tributylammonium chlorochromate, L-valine, Oxidation, Mechanism

INTRODUCTION

L-valine was first isolated from casein in 1901. It is one of the essential basic amino acid classified as nonpolar and forms active sites of enzymes and helps in maintaining proper conformation by keeping them in proper ionic states. It is essential in the nutrition of mammals. Its role is crucial in the development of organs, especially in children. It also finds applications in medicine and pharmaceuticals. Hence oxidation of L-valine may help in understanding some aspect of enzyme kinetics¹.

Chromium(VI) is established as a versatile oxidant for many types of substrates varying from metal ions to naturally occurring organic compounds, Cr(VI) as chromate is highly soluble in water, and is reported to be highly $toxic^{2-3}$ there is continued interest in the development of new chromium (VI) reagents for the effective and selective oxidation of organic substrates in mild conditions Therefore, the search for new oxidizing agents is of interest to synthetic organic chemists. Many such Cr (VI) reagents have been developed in recent years 4-¹².Tributylammoniumchlorochromate is also one such oxidant developed recently. It is a more efficient and mild oxidizing agent ¹³⁻¹⁴. This new compound is more efficient for quantitative oxidation of several organic substrates and has certain advantages over similar oxidizing agents in terms of the amount of oxidant and solvent required, short reaction times and high yields. The kinetics of oxidation of L-valine have been studied by many reagents such aspotassium permanganate¹⁵, ruthenium(III) catalyzed oxidation of L-valine by potassium permanganate in alkaline medium ¹⁶, silver (I) catalysed oxidation of valine by cerium (IV) ¹⁷,Cr (III) catalysed oxidation of L-valine by permanganate in alkaline medium ¹⁸,Mn(II) catalyzed oxidation of α -amino acids by peroxomonosulphatein alkaline medium ¹⁹ Ruthenium(III)chloridecatalyzed oxidation of valine byN-bromophthalamide^{20a},Pd(II) catalyzed oxidation of valine by N-bromophthalimide^{20b}, and many other well-known oxidizing agents. Literature survey reveals that no report is available on kinetics and mechanism of oxidation of L-valine by TriBACC. Hence we have considered it to study the kinetics and mechanism of oxidation of L-Alanine by TriBACC.

MATERIALS AND METHODS

Tributylamine, chromium trioxide and L-valinne reagents used were of analytical grade. Acetic acid was purified by distillation over CrO_3 followed by fractionation in the presence of acetic anhydride. Pure acetic acid fraction was collected over 118 ^{0}C . Stock Solution of L-valine were prepared in doubly distilled water and acetic acid, these solution were employed for kinetic studies. All other reagent was of analytical grade. The reaction was carried out by UV–visible spectrophotometer with a 1 cm quartz cell at 445 nm. Kinetics of reaction was followed in temperature range 303-323 K.

Preparation of tributylammoniumchlorochromate [(C₄H₉)₃NHCrO₃Cl]

Chromium (VI) oxide (CrO₃; 15 g, 0.15 mol) was dissolved in water in a beaker and 6 M hydrochloric acid (25 ml, 0.30 mol) was added with stirring at 0 $^{\circ}$ C. To the resultant clear orange solution, tri butylamine (71.29 ml, 0.3 mol) was carefully added over a period of 30 min and stirring was continued for 30 min at 0 $^{\circ}$ C. The precipitated orange solid was isolated by filtration, washed with petroleum ether (3 × 60 ml) and dried under vacuum for 2hrs at room temperature ²¹ (Yield 45.81 gm. (95%); m.p. 165 $^{\circ}$ C). A solution of the compound was prepared in acetic acid, and stored in brown bottle to prevent its photochemical degradation.

Product Analysis:

Product analysis was carried under kinetic conditions. In a typical experiment, a mixture of L-valine (0.1 mol dm⁻³) and TriBACC (0.01 mol dm⁻³) was made up to 50 ml with acetic acid in presence of HCl (0.8 mol dm⁻³). The mixture was kept in the dark for twelve hours until completion of oxidation. It was then treated overnight with an excess (125 ml) of a freshly filtered saturated solution of 2, 4-dinitrophenylhydrazine in 2M HCl. The precipitated 2, 4-dinitrophenylhydrazone (DNP) was collected by filtration, dried, recrystallized from ethanol and weighed. The product was found identical m.p and mixed m.p with an authentic sample of DNP of Isobutyraldehyde. The yield was 81%. Ammonia was identified by Nessler's reagent. The presence of corresponding aldehyde and ammonium ions were also confirmed by the spot tests ²³, with chromotropic acid and p-nitrobenzene diazonium chloride respectively.

Stoichiometry:

The stoichiometry of the reaction was determined by carrying out several sets of experiment with varying amount of (TriBACC) largely in excess over L-valine in acetic acid by using 1M H₂SO₄ The remaining (TriBACC) was then analyzed spectrophotometrically. The result indicated that 1 mole of L-Valine react with 1 mole (TriBACC).

Kinetic procedure:

The reactions were followed under pseudo-first-order conditions by keeping large excess (x 10 or greater) of the L-valine bver TriBACC. The reactions were followed at constant temperatures (303K), by monitoring the decrease in [TriBACC] spectrophotometrically at 445 nm the pseudo first-order rate constant K_{obs} , was evaluated from the linear (r = 0.990-0.999) plots of log [TriBACC] against time for up to 80% completion of reaction. Duplicate kinetic runs showed that the rate constants were reproducible to within 3%

RESULTS

The results of oxidation of L-valine by TriBACC are represented in table 1-6.

Effect of variation of concentration of L-valine on rate of reaction:

The oxidation of L-valine with TriBACC in acetic acid in presence of sulphuric acid yields Isobutyraldehyde, by keeping constant [TriBACC] and $[H_2SO_4]$, the increase in[L-valine decreases the rate of reaction (Table-1). The plot of log of k_{obs} versus log[L-valine for different initial concentration of L-valine linear with negative unit slope demonstrates that inverse first order dependence of rate on L-valine (Figure: 1).

TABLE – 1: Effect of varying [L-valine] on the rate of oxidation by TriBACC R^2 =0.996 [TriBACC] = 1 x10⁻³ mol dm⁻³; [H₂SO₄] = 1mol dm⁻³, Temperaturer. = 303K

L-valine (mol dm ⁻³)	0.001	0.002	0.003	0.004	0.005
$K \ge 10^{-4} S^{-1}$	17.7	16.7	16.6	16.2	15.6

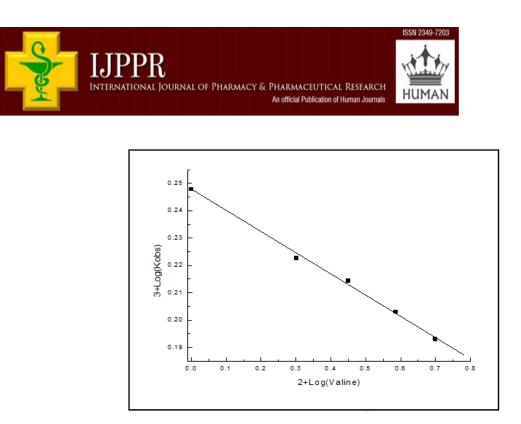


Figure-1: 3+log [Kobs] VS 2+log [L-Valine]

Effect of varying [TriBACC] on the rate of oxidation of L-Valine

At constant [L-valine] and [H₂SO₄] by varying the concentration of [TriBACC] from 2.0 x 10^{-3} to 6.0 x 10^{-3} mol dm⁻³ rate of reaction increasesTable-2. The plot of log K_{obs}verses log [TriBACC] for different initial concentration of TriBACC is linear withpositiveslope presents the first order dependence of rate on TriBACC.

TABLE – 2: Effect of varying [TriBACC] on the rate of oxidation of [L-Valine

 $[L-valine] = 1 \times 10^{-2} \text{ mol dm}^{-3}; [H_2SO_4] = 1 \text{ mol dm}^{-3}, \text{ Temperature.} = 303 \text{ K}.$

TriBACC (mol dm ⁻³)	0.002	0.003	0.004	0.005	0.006
K x 10 ⁻⁴ S ⁻¹	15.0	18.9	21.6	22.6	24.6

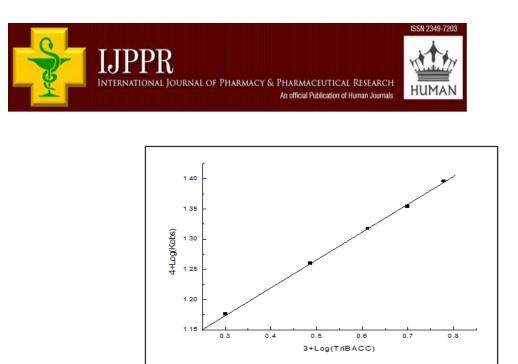


Figure-2: 4+Log (Kobs) VS 3+Log [TriBACC]

Effect of H₂SO₄ on reaction rate:

The rate of reaction was studied by varying sulphuric acid concentration. The rate of reaction were decreases with increasing the concentration of sulphuric acid and a plot of log conc. vs. Log (K_{obs}) was linear with a unit slope indicating first order on [H⁺] table-3.

TABLE – 3: Effect of varying [H₂SO₄] on the rate of oxidation of [L-valine]

 $[L-valine] = 1 \times 10^{-2} \text{ mol dm}^{-3}, [TriBACC] = 1 \times 10^{-3} \text{ mol dm}^{-3}, Temperature. = 303K.$

$[H^+]$ mol dm ⁻³	2	3	4	5	6
$K_{obs} x 10^{-4} S^{-1}$	21.6	21.0	20.3	19.8	19.1

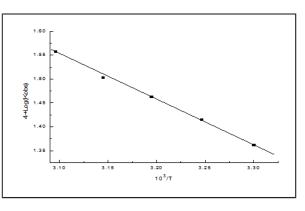
Effect of ionic strength:

The effect of added salts on the reaction rate was studied by adding 0.001 moldm⁻³ of the salts, by keeping the concentrations of L-valine, H₂SO₄ and TriBACC constant. It was observed that the rate of oxidation does not altered by the addition of salts.

Table 4: Effect of variation of [salts] on reaction rate

L-valine 1×10^{-2} mol dm⁻³; [TriBACC] = 1 x10⁻³ mol dm⁻³; [H₂SO₄] = 1mol dm⁻³, Temperature. = 303K

Salts 0.001 moldm ⁻³	KCl	NaCl	CaCl ₂	MgSo ₄	Al(No ₃) ₂
$K_{obs X 10}^{-4} S^{-1}$	12.1	12.4	12.3	12.3	12.4


Effect of Temperature:

The study of effect of temperature on rate of oxidation of L-valine by TriBACC has been investigated at 303-323K by keeping the concentration of L-valine TriBACC& H₂SO₄ constant. Rate constants are given in Table 5. The Arrhenius plots of log k vs. 1/T were found to be linear (Fig.3). The activation energy (Ea) was calculated from the slope of the plots. From this value, the thermodynamic parameters $\Delta H^{\#}$, $\Delta S^{\#}$, $\Delta G^{\#}$ was evaluated (Tabel-6).

Table-5: Effect of variation of Temperatures on reaction rate

L-leucine $1 \times 10^{-2} \text{ mol dm}^{-3}$; [TriBACC] = $1 \times 10^{-3} \text{ mol dm}^{-3}$; [H₂SO₄] = 1 mol dm^{-3} ,

Temp.	303 K	308 K	313 K	318 K	323 K
Kx10 ⁻⁴ S ⁻¹	22.9	26.0	29.3	31.0	35.4

 $4{+}log\;k_{obs\;VS\;1000/T}$

Figure: 3: Arrhenius plot of oxidation of L-Valine

Activation parameters are presented in (Table 6). The negative values of entropy of activation reflect that the transition state is more rigid than initial state. The nearly constant ΔG value indicates that similar mechanism is operative for the oxidation of L-valine

Table6: Activation Parameters

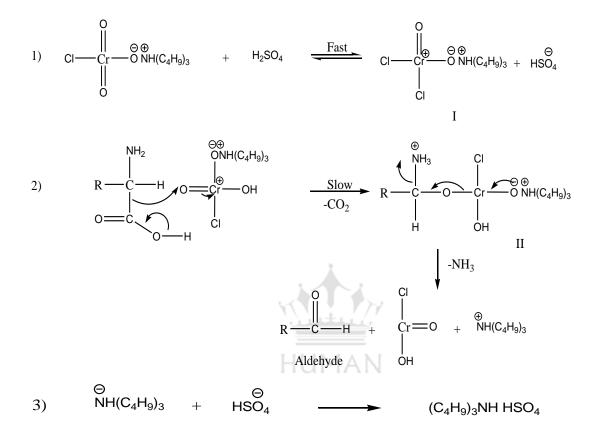
L-valine 1×10^{-2} mol dm⁻³; [TriBACC] = 1 x10⁻³ mol dm⁻³; [H₂SO₄] = 1mol dm⁻³, Temperature. = 303K

Activation	Ea KJ mol ⁻¹	$\Delta H^{\#} KJ mol^{-1}$	$\Delta S^{\#} J K^{-1} mol^{-1}$	$\Delta G^{\#} \text{ KJ mol}^{-1}$
parameters	19.438	16.835	-242.15	92.628

Effect of acrylonitrile as free radical detector

The addition of acrylonitrile to the reaction mixture at 35 and 45 0 C did not alter the reaction rate and there was absolutely no polymer or change in the viscosity was detected, showing the absence of free radicals in the reaction mechanism.

CONCLUSION


Sulphuric acid catalysed oxidation of L-valine by Tributylammoniumchlorochromate was studied in acid medium at 303 K. Itshows first-order dependence on TriBACC, Inverse first order on L-valine and sulphuric acid,L-valine as oxidised in to corresponding carbonyl compound. Ionic strength does not alter the rate of reaction and also addition of acrylonitrile did not polymerise the reaction. The thermodynamic parameters have been evaluated. Aldehyde is the mainproducts of the reaction and suitable kinetic mechanism has beenproposed (scheme-1).

Mechanism of oxidation of L-valine by TriBACC:

Scheme-1

Where, $R = (CH_3)_2CH$ - for L-valine

ACKNOWLEDGEMENTS

The authors are thankful to the Principal PratishthanMahavidyalayaPaithan for providing laboratory facilities.

REFERENCES

1. Losi M. E. Amrhein C. FrankenbergerJr W. T. (1994) Environmental biochemistry of chromium. In Reviews of environmental contamination and toxicology (91-121). Springer New York.

2. Viamajala S. Peyton B. M.Sani R. K. Apel W. A. Petersen J. N. (2004) Toxic effects of chromium (VI) on anaerobic and aerobic growth of shewanellaoneidensis MR-1.Biotechnology progress, 20(1), 87-95.

3.Hussain S. Surendra T. Quadeer S. Ramdas K. (2013). oxidation of 1,-propanol by tripropylammoniumfluorochromate in acid medium: a kinetic and mechanistic study. International Journal of Pharmaceutical Archive 2(3).

4.Struga M, Kossakowski J, Kedzierska E, Fidecka S, Stefańska J (2007) Synthesis and pharmacological activity of urea and thiourea derivatives of 4-azatricyclo[5.2.2.0(2,6)] undec-8-ene-3,5-dione. Chem Pharm Bull (Tokyo) 55, 796-799.

5.Mansoor, S. S. Shafi S. S. (2011) Studies on the Kinetics of TetraethylammoniumBromochromate Oxidation of Some Meta-and Para-Substituted Benzyl Alcohols in Non-Aqueous Media. Zeitschrift fur PhysikalischeChemie International journal of research in physical chemistry and chemical physics, 225(2), 249-263.

6.Ghammamy S. Mehrani K. Hajighahramani M. (2007)Tetrapropylammoniumbromochromate and tetrabutylammoniumbromochromate $[NR_4]$ CrO₃Br, (R= Pr, Bu): two new and efficient reagents for oxidation of alcohols. African Journal of Pure and Applied Chemistry, 1(1), 008-010.

7. Ghammamy S. Mehrani K. Afrand H. Javanshir Z. Rezaeibéhbahani G. Moghimi A. Aghbolagh, Z. S. (2009) Three new tetraalkylammoniumbromochromates, NR_4 [CrO₃Br],(R= Et, Hex, Hep): Mild and efficient reagents for oxidation of primary and secondary alcohols. Journal of the Chilean Chemical Society, 54(4), 491-493.

8.Koohestani B. Javanshir Z. Ghammamy S. Mehrani K. Afrand H. Saghatforoush L. (2008) Synthesis and Characterization of a New Oxidation Reagent: Tetrahexylammonium chlorochromate, (C_6H_{13}) 4N [CrO₃Cl]. Journal of the Mexican Chemical Society, 52(2), 116-119.

9.Sadeghy B. Ghammami S. (2005) Oxidation of alcohols with tetramethylammoniumfluorochromate in acetic acid.Russian journal of general chemistry, 75(12), 1886-1888.

10. Mansoor S. S. Shafi S. S. (2014) Oxidation of aniline and some para-substituted anilines by benzimidazoliumfluorochromate in aqueous acetic acid medium–A kinetic and mechanistic study. Arabian Journal of Chemistry,7(2), 171-176.

11.Patwari S. B. Khansole S. V. Vibhute Y. B. (2009) Kinetics and mechanism of oxidation of aniline and substituted anilines by isoquinoliniumbromochromate in aqueous acetic acid.Journal of the Iranian Chemical Society, 6(2), 399-404.

12.Mansoor S. S. Shafi S. S. (2015) Oxidation of methionine by tetraethylammoniumchlorochromate in nonaqueous media–A kinetic and mechanistic study. Arabian Journal of Chemistry,8(4), 480-486.

13.Ghammamy S. Mazareey M. (2005)Tributylammoniumchlorochromate,(C~ 4H~ 9)~ 3NH [CrO~ 3Cl](TriBACC): A new, mild and stable oxidant for organic substrates. journal-serbian chemical society, 70(5), 687.

14. Mansoor S. S. Shafi S. S. (2010) Oxidation of benzhydrol by tributylammoniumchlorochromate: a kinetic and mechanistic study. Reaction Kinetics, Mechanisms and Catalysis, 100(1), 21-31.

15.Harihar A. L. Kembhavi M. R. Nandibewoor S. T. (2000) Kinetic and mechanistic study of the oxidative deamination and decarboxylation of L-valine by alkaline permanganate.MonatsheftefürChemie/Chemical Monthly, 131(7), 739-748.

16.Bilehal D. C. Kulkarni R. M.Nandibewoor S. T. (2001) Kinetics and mechanistic study of the ruthenium (III) catalyzed oxidative deamination and decarboxylation of L-valine by alkaline permanganate. Canadian journal of chemistry, 79(12), 1926-1933.

17.Yadav M. B. Devra V. Rani A. (2010) Kinetics and mechanism of silver (I) catalyzed oxidation of valine by cerium (IV) in acid perchlorate medium. Ind. J. Chem A, 49, 442.

18.Kulkarni R. M. Bilehal D. C.Nandibewoor S. T. (2003) Deamination and decarboxylation in the chromium (III)-catalysed oxidation of L-valine by alkaline permanganate and analysis of chromium (III) in microscopic amounts by a kinetic method. Transition metal chemistry,*28*(2), 199-208.

19. Rani S. K. Easwaramoorthy D. Bilal, I. M.Palanichamy M. (2009) Studies on Mn (II)-catalyzed oxidation of α -amino acids by peroxomonosulphate in alkaline medium-deamination and decarboxylation: A kinetic approach. Applied Catalysis A: General, 369(1), 1-7.

20a. Singh A. K. Jain B. Negi R. Katre Y. Singh, S. P.Sharma V. K. (2009) A novel oxidation of value by N-bromophthalimide in the presence of Ruthenium (III) chloride as a homogeneous catalyst.Catalysis letters, 131(1-2), 98-104.

20b. Singh A. K. Jain B. Negi R. Katre Y. Singh S. P. (2009) Oxidation of Valine by N-Bromophthalimide in Presence of Chloro-Complex of Pd (II) as Homogenous Catalyst: A Kinetic and Mechanistic Study. Open Catal. J, 2, 12-20.

21.Ghammamy S. Mazareey M. (2005)Tributylammoniumchlorochromate,(C~ 4H~ 9)~ 3NH [CrO~ 3Cl](TriBACC): A new, mild and stable oxidant for organic substrates. journal-serbian chemical society, 70(5), 687.

22. Vogel A.I. (1973)A Text book of Practical Organic Chemistry including Qualitative Organic Analysis, 3rd Edition, ELBS Longman, London, 332.

23.Feigl F. (1954) "Spot Test", Elsevier, Amsterdam New York, 349.

