Human Journals

Review Article

February 2017 Vol.:8, Issue:3

© All rights are reserved by Mohammed Mubeen Ahmed et al.

Regulatory Requirements for Marketing Authorization of Different Categories of Drugs in India

Mohammed Mubeen Ahmed*¹ and S. B. Puranik², Naresh kumar Hasija

¹Research scholar OPJS University, Churu, Rajasthan, India

²Research Guide OPJS University, Churu, Rajasthan, India

Submission: 7 February 2017Accepted: 12 February 2017Published: 25 February 2017

www.ijppr.humanjournals.com

Keywords: CDSCO, MAA, Biologics, NCE. Variabilty

ABSTRACT

India is a pool of diverse population base of more than 1.2 billion and is a home for a numerous diseases, Institutions and hub of contract manufacturers and researchers, and India has the second largest number of FDA-approved plants for ingredients and formulations. India is today one of the top emerging markets in the global pharmaceutical market. The sector is highly knowledge based and its steady growth is positively affecting the Indian economy. The organized nature of the Indian pharmaceutical industry is attracting several companies that are finding it viable to increase their operations in the country. Further, India is home to about 10,500 manufacturing units and over 3,000 pharma companies. India exports all forms of pharmaceuticals from APIs to formulations, both in modern medicine and traditional Indian medicines.

INTRODUCTION:

Indian Pharmaceutical Industry:

Geographically, India is comprised area of 3.29 million sq. km. (1.27 million sq. mi.); about one-third the size of the USA. Genetically, culturally and socio-economically diverse population base of more than 1.2 billion is a home for numerous diseases as well as for qualified, English-speaking professionals, Institutions and hub of contract manufacturers and researchers ^{1, 2}. Today, Indian economy stand as the third largest based on the Purchasing Power Parity (PPP) and in terms of globally eleventh largest by nominal Gross Domestic Product (GDP), due to its rapid growth, especially over the last decade, India is considered an industrialized nation³. Apart from being a multi-ethnic, pluralistic society, India is also blessed with a variety of wildlife.

McKinsey & Company a global management and consulting firm, through a major study it has reported that by 2020 India's pharmaceutical sector will touch US\$ 45 billion. The reasons for this optimism are well founded. In the period 2002–2012, the country's healthcare sector grew three times in size, touching US\$ 70 billion from US\$ 23 billion. India's pharmaceutical market experienced a similar boom, reaching US\$ 18 billion in 2012 from US\$6 billion in 2005. The report further states that the Indian pharmaceutical market will be the sixth largest in the world by 2020. The rise of pharmaceutical outsourcing and investments by multinational companies (MNCs), allied with the country's growing economy, committed health insurance segment and improved healthcare facilities, is expected to drive the market's growth. India is today one of the top emerging markets in the global pharmaceutical scene.

The sector is highly knowledge based and its steady growth is positively affecting the Indian economy. The organized nature of the Indian pharmaceutical industry is attracting several companies that are finding it viable to increase their operations in the country. Further, India is home to about 10,500 manufacturing units and over 3,000 pharma companies. India exports all forms of pharmaceuticals from APIs to formulations, both in modern medicine and traditional Indian medicines⁴.

Biosimilars development pose different challenges when compare to small molecule generics, with additional requirements in terms of:

• Sophisticated technologies

- Clinical development, clinical trial expertise and proving comparative data
- Market access
- Manufacturing in dedicated manufacturing facility
- Sales and marketing capabilities⁵

METHODOLOGY:

Description of Biologic and Biosimilars:

Biologic:

A biologic medicine is a large molecule typically derived from living cells and used in the treatment, diagnosis or prevention of disease. These are produced by using biotechnology procedures like r-DNA technology. Biologic medicines include therapeutic proteins, DNA vaccines, monoclonal antibodies and fusion proteins. Biologics are distinct from small molecule drugs in that they are larger, and are far more structurally complex agents. Biologic medicines are often 200 to 1,000 times the size of a small molecule drug. They are also highly sensitive, making them more difficult to characterize and produce. Due to both their size and sensitivity, biologic medicines are almost always injected into a patient's body⁶.

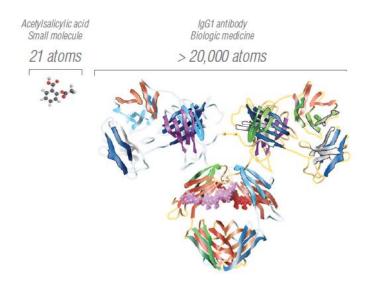


Figure 1: Structural difference between chemical entity drugs and biologic medicines

Reference innovator product for biosimilars:

• Reference innovator product must have same active substance as of the proposed similar biologic.

- The dosage, form and route of administration of the similar biologic should be same as that of reference innovator product.
- Reference innovator product should have been authorized for approval in India to confirm its quality, safety and efficacy. In cases where reference innovator product is not authorized in India, it should have been approved in countries with well established regulatory systems such as US FDA, EMA etc. and should have been in use for at least four years.
- Another similar biologic cannot be considered as reference innovator product, as the reference innovator product should be the one that has been licensed based on a full quality, safety and efficacy data.
- Same reference innovator product should be used throughout the development of a similar biologic i.e. manufacturing process, comparability exercise, pre-clinical and clinical evaluation.
- The acceptance of a reference innovator product for evaluation of a similar biologic does not imply approval for use of the reference innovator product in India.
- In case the reference biologic is not marketed in India, the reference biologic should have been licensed and widely marketed for 4 years post approval in innovator jurisdiction in a country with well established regulatory framework. In case no medicine or only palliative therapy is available or in national healthcare emergency, this period of 4 years may be reduced or waived off^{7,8}.

Figure 2: Original biologic and Biosimilars Biosimilars (similar biologics):

Table 1: Comparative table for definition of biosimilars across global

INDIA	UNITED STATES	EUROPE
As per the Indian Biosimilars	A biological product that is	A biological medicine that is
guidelines, similar biologic	highly similar to a U.S.	developed to be similar to an
includes: a biological product or	licensed reference biological	existing biological medicine
drug produced by genetic	product notwithstanding	(the 'reference medicine').
engineering techniques and	minor differences in	When approved, a
claimed to be "similar" in terms	clinically inactive	Biosimilar's variability and
of quality, safety, efficacy to a	components, and for which	any differences between it
reference innovator product,	there are no clinically	and its reference medicine
which has been granted a	meaningful differences	will have been shown not to
marketing authorization in India	between the biological	affect safety or
by DCGI on the basis of the	product and the reference	effectiveness ⁶ .
regulatory regime (complete	product in terms of the	
dossier) and with a history of safe	safety, purity and potency of	
use in India ⁷ .	the product ⁶ .	

Table 2: Different terminology used for the word biosimilars across Global

COUNTRY/AUTHORITY	TERM
WHO	Similar biotherapeutic products
USFDA, Japan	Follow-on protein products/Follow-on biologics
Canada	Subsequent entry biologics
EMA, Korea, India, China, Australia	Biosimilars

COMPARISON BETWEEN BIOSIMILARS AND BIOLOGICS:

A biosimilar medicine is analogous to a biological medicine that has already been approved (the 'biologic reference medicine') and they are the genetic versions of biologics. The active ingredient of a biosimilar medicine is analogous to the biological reference medicine. Biosimilar and biological reference medicines are given in general at the same dose to treat the same disease.

Based on these different definitions, there are three determinants in the definition of the biosimilar product:

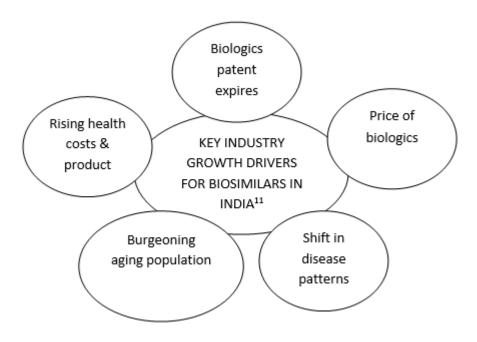
- i. It should be a biologic product;
- ii. The reference product should be a previously licensed biologic product;
- iii. The demonstration of high similarity in safety, quality, and efficacy is obligatory⁹.

Table 3: Differences between Generic, Biologics and Biosimilars

GENERIC	GENERIC BIOLOGICS		
Chemical and therapeutic	Biological medicinal products	Biological product referring,	
equivalent of original low	developed through biopharmaceutical	but not identical to an	
molecular weight drug whose	existing product, submitted		
patent has expired.	Recombinant DNA technology	for separate marketing	
	Cell fusion	approval following patent	
		expiration.	

Similar biologics are not expected to be direct copies of biologic medicines and are therefore not the same as generic drugs. Due to the complex structure of biologic medicines and the processes involved in production, biosimilars must be shown on the basis of analytical, non-clinical and clinical data to be similar to an original biologic in terms of structural characteristics, and safety and efficacy. Minor differences with the active ingredient are expected and permitted so long as any such differences are demonstrated not to be clinically meaningful⁶.

Table 4: Comparison of Generics and Biosimilars


	GENERICS	BIOSIMILARS
Definition	A generic drug is the same as a brand name drug in dosage, safety, strength, how it is taken, quality, performance, and intended use. A generic drug product must contain the identical amounts of the same active ingredient(s) as the brand name product.	A biological product or drug produced by genetic engineering techniques and claimed to be "similar" in terms of quality, safety, efficacy to a reference innovator product.
Product related differences	 Produced by chemical synthesis these are far smaller (<500 Da), i.e., mol.wt,1000, self-contained, organic molecules 	 Biotechnologically produced by host cell lines 100 to 1000 times larger in size (5000-3,00,000 Da), having several hundred amino acids (average

	 Well-defined physiochemical properties Usually Stable Single entity, high chemical purity, purity standards well established Identical copy can be made Administered through different routes of administration. Rapidly enters systemic circulation through blood capillaries. Distribution to any combination of organ/tissue Often specific toxicity Often non-antigenic 	molecular weight of 150 per amino acid), biochemically joined together in a defined sequence by peptide bonds to form a polypeptide. Complex physiochemical properties Often unstable, Sensitive to heat and shear (aggregation), may require specific formulation Heterogeneous nature, broad specifications which may change during development, difficult to standardize Impossible to ensure identical copy. Usually administered parenterally Larger molecule primarily reach circulation via lymphatic system, subject to proteolysis during interstitial and lymphatic transit Distribution usually limited to plasma and/or extracellular fluid Mostly receptor mediated toxicity Usually antigenic
Manufacturing differences	 Completely characterized by analytical methods Easy to purify, costs cheap Contamination can be generally avoided, easily detectable and removable Not affected by slight changes in production process and environment Reproducibility easy to establish 	 Difficult to characterize Lengthy and complex purification process & isolation, expensive High possibility of contamination, detection is harder and removal is often impossible Highly susceptible to slight changes in production process and environment Reproducibility difficult to establish
Clinical development	 Limited clinical activities, often only phase 1 PK/PD studies Short timeline for approval Development costs up to 5 m\$ Enrolment of around 20-100 subjects 	 Extensive clinical trial activities, including phase 1 & 3 studies. Pharmacovigilance and periodic safety updates after launch needed Development costs around 350-800m\$

		 Timeline of 6-15 years Enrolment of >1000 patients/subjects
Marketing	 Large price discounts No or limited detailing to physicians Key role of wholesalers and payers Special delivery device not usually necessary Automatic substitution is possible in some pharmacies Simple to distribute 	 Smaller price discounts; price sensitivity is product-specific Detailing to specialist physicians required Method of delivery can be a key differentiator No automatic substitution Specialist distribution often required
Regulation	 Must be identical to reference product Substitutable/interchangeable Abbreviated procedure is applicable to all drugs 	 Must be highly similar to reference product Not automatically substitutable Abbreviated approval requirements vary depending on the drug

Table 5: Comparision in Development Stages of Generics, Biosimilars and Originators

Activities	Generics	Biosimilars	Reference biologics(originators)	
No. of patients in various phases of development	20-50 patients	~500 patients	~1000-2000 patients	
Time to market	2-3 years	7-8 years	8-12 years	
Development costs	USD 2 million-3 million	USD 100 million- 150 million	USD 500 million-1 billion	
Success probability	90-99%	50%	5%	

Figure 3: Industry Growth Drivers

Figure 4: Flow Chart of Strategy Followed for Methodology

Table 6: Application Forms and corresponding licenses for Indian Regulatory Authorities to carry out development stage of products

Application types	Application	License	Regulator	Validity	Timelines
	Form No.	Form No.	y body		in Days
Import of drugs for the	Form 12	Form 11	CDSCO	1 Year	45
purpose of examination, test					
or analysis					
NOC for manufacture for	-	NOC	CDSCO	-	60#
the purpose of examination,					
test or analysis (Form 29)					
Manufacture for the purpose	Form 30	Form 29	SLA	1 Year	
of examination, test or					
analysis					

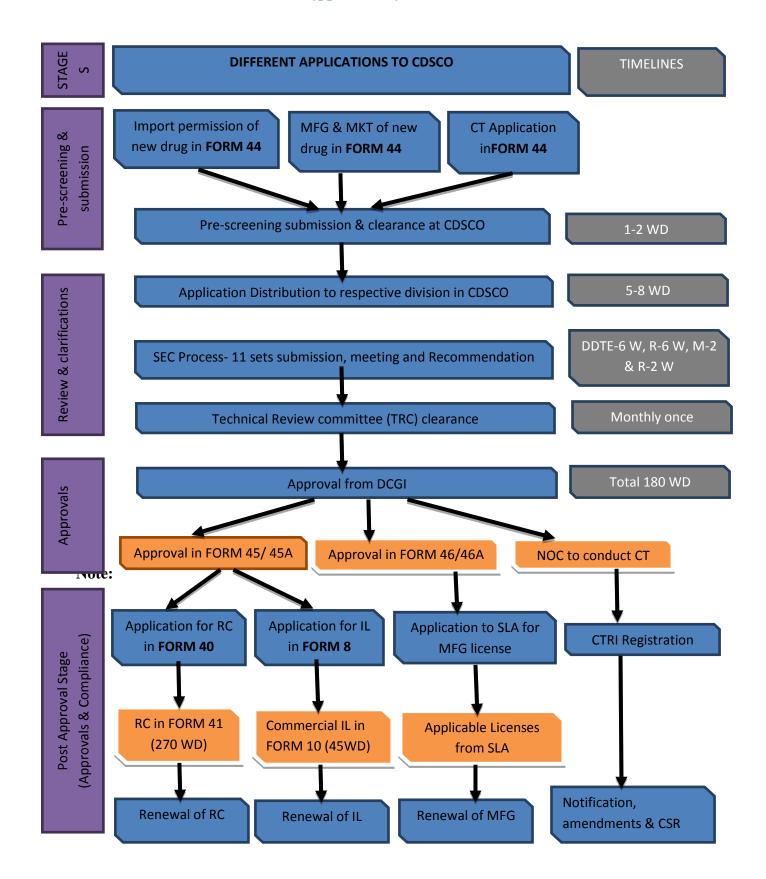
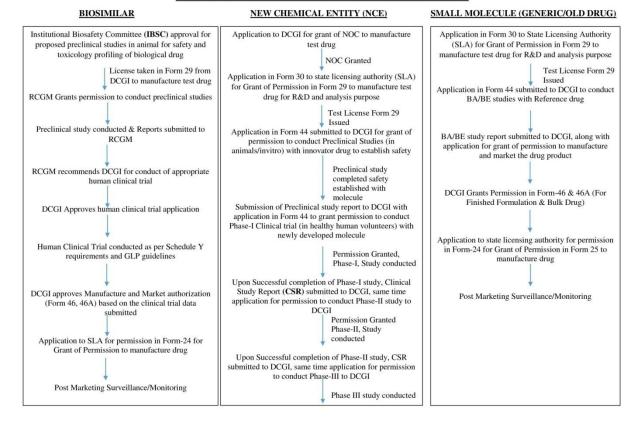
Table 7: The list of various applications to CDSCO/ state licensing authorities (SLA) for drug import, site registration, manufacture and marketing authorization

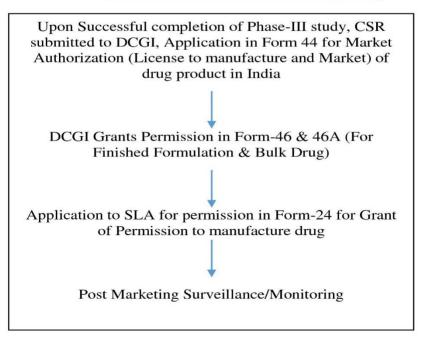
Application types	Application	License	Regulator	Validity	Timelines
	Form No.	Form No.	y body		in Days
Import of a new drug (DP)/	Form 44	Form 45/	CDSCO	-	180
(DS)		Form 45 A			
Manufacture of New Drug	Form 44	Form 46/	CDSCO	-	180
(DP)/ (DS)		Form 46 A			
Permission to undertake	Form 44	NOC	CDSCO		180
clinical trial					
Registration certificate for	Form 40	Form 41	CDSCO	3 Years	270
import of Drugs into India					
Import license for drugs for	Form 8	Form 10	CDSCO	3 Years	45
commercial use					
Manufacture for sale or	Form 24	Form 25	SLA	5 Years	30
distribution (Mfr.)		(Fresh)			
		Form 26			
		(Renewal)			

Mfr. of Drugs specified in	Form 27	Form 28		5 Years	30
schedule C & C (1) and not		(Fresh)			
in schedule X		Form 26			
		(Renewal)			
Mfr. of LVP/Sera and	Form 27 D	Form 28 D		5 Years	60
Vaccines excluding those					
specified in Schedule X					
Mfr. of Loan licenses except	Form 24 A	Form 25A	Concerned	5 Years	30*
schedule C & C (1) and X		(Fresh)	SLA		
		Form 26A			
		(Renewal)			
Sale license to sell, stock or	Form 19	Form 20		5 Years	30*
exhibit or offer for sale or		(Retail)			
distribution of drugs(Drugs		Form 20 B			
other than and X)		(Wholesale)			
Sale license drugs specified	Form 19 C	Form 20F		5 Years	30*
in schedule X and not in		(Retail)			
schedule C & C (1)		Form 20 G			
#****		(Wholesale)	.1.16		

^{*}If inspection of premises involved, the timelines will be considered from the date of receipt of the inspection report

^{*}Timelines vary state to state licensing authority


Figure 5: REGULATORY PATHWAY FOR NEW DRUGS (CT, MAA, RC and Import) APPLICATIONS AT CDSCO

DRUG APPROVAL REGULATORY PATHWAYS FOLLOWED IN INDIA

DRUG APPROVAL REGULATORY PATHWAYS FOLLOWED IN INDIA

NEW CHEMICAL ENTITY (NCE)

Stepwise Procedures for the Development of r-DNA Biosimilars Products

Constitution of Institutional Biosafety committee (IBSC):

Application to DBT for creation of IBSC DBT approves & appoints a Govt. nominee in ISC Ref: Guidelines & Handbook for IBSC; Formation of IBSC 2nd revised version May 2011 **IBSC** meetings New product development Requirements for import license: 1. Applicant name 2. Description of GMO Submit application in Form B1 to RCGM 3. Quantity of GMO 4. Source of GMO 5. Objective of the proposal 6. Mode of shipment 7. Information on containment facilities installed at R& D & production premises (whichever is applicable) Clearance in Form B2 from RCGM 8.SOP on decontamination, disposable Submit application Form 12 with RCGM mechanisms & risk management Copies: 23 Recommendation to DCGI Requirements for import license: 1. Form 12 (application) clearly indicate the name of country, manufacturer, generic name, composition of drug & therapeutic class 2.Mfg-form 29: Purpose of import and detailed utilization indicating nature of tests and quantity required for test 3. An undertaking that drugs imported under test license would be used for test & analysis 4. Detailed information regarding import of same drug during last 3 years along with certificate destruction of unused drug

Form 11 from DCGI (License to import drugs/strains/kit for the purposes of examination, test or analysis

Development phase

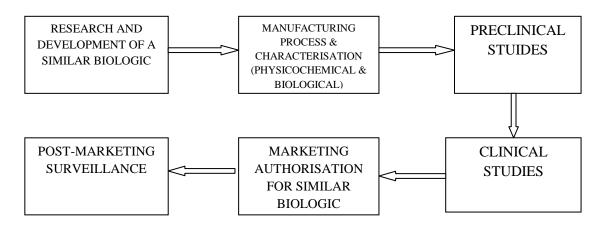


Figure 6: Steps involved in the Development and Marketing of a Biosimilar

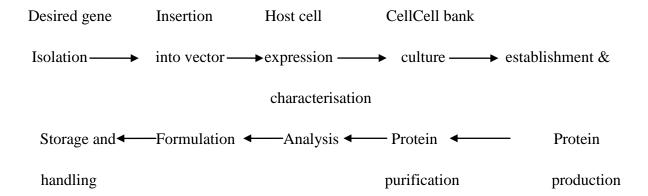


Figure 7: Typical steps in the Manufacture of a biological product

CONCLUSION:

In the present scenario, India has stringent regulatory requirements for approval of a new drug. The single regulatory approach for marketing authorization application (MAA) of a new drug product belonging to various categories of drugs (NCE, Biologicals, Controlled Drugs etc.) is utmost difficult. Therefore, the knowledge of precise and detailed regulatory requirements for MAA of different categories of drugs should be known to establish a suitable regulatory strategy. The drug approval process from regulatory authorities for different categories of pharmaceutical products and also provides a perspective on the development of Indian pharmaceuticals regulatory process from pre-independence era to till date.

REFERENCES:

- 1. Brief introduction on India. Available from: http://www.rlc.dcccd.edu/ibt/IntroductiontoIndia.pdf
- 2. Indian Population. Available from: http://www.indiaonlinepages.com/population/india-current-population.html
- 3. Indian economy. Available from: http://www.ibef.org/economy/indiasnapshot/facts-about-indian-economy
- 4. Indian Pharma sector. Available from: http://www.ibef.org/industry/pharmaceutical-india.aspx
- 5. Emerging trends in Biosimilars in India (Formula of Success). India Brand Equity Foundation (IBEF). Available from: http://www.ibef.org/download/Biosimilars-in-India-30312.pdf
- 6. Amgen Inc. Biologics and Biosimilars-An overview.Available from: http://www.amgen.com/pdfs/misc/Biologics_and_Biosimilars_Overview.pdf
- 7. Guidelines on Similar Biologics: Regulatory Requirements for Marketing Authorization in India.]. Available from: http://dbtbiosafety.nic.in/Files%5CCDSCO- DBTSimilarBiologicsfinal.pdf
- 8. Dr. Bobby George. Current regulations governing Biosimilars. Pharma times Available from: http://www.lopdf.net/preview/HCMMxcg03A_9XfjUjU6LOwU2tpGJwjE5TfJObh9RIO0,/Current-regulations-governing-biosimilars.html?query=PDUFA-Definition
- 9. SruthiKonangi. Comparison of Global Regulatory Approvals for Biosimilar Products. PharmTech. Available from: http://sphinxsai.com/2013/JulySept13/phPDF/PT=09(924-935)JS13.pdf
- 10. Bhupinder Singh Sekhon. Biosimilars: An overview. Dove express.2011 March 14. [Available from:http://www.dovepress.com/biosimilars-an-overview-peer-reviewed-article-BS
- 11. India can emerge as a Key Player in the Biosimilar Segment. Pharma Biotech.Available from: http://www.chemtech-online.com/P&B/Ramniwas_april13.html
- 12. India's New Similar Biologic Guidelines: An Overview. Kale Law Office (Corporate Law-Tax-Intellectual Property). Available from:http://www.kalelawoffice.com/wp-content/uploads/2012/07/India%E2%80%99s-New-Similar-Biologic-Guidelines-An-Overview.pdf
- 13. Horner A., Comparison of a global submission of new biological entity and a new chemical entity strategic decisions and criteria for implementation (2005). Available from: http://www.dra.uni-bonn.de/hoerner.
- 14. Singh H. Sir Ram Nath Chopra: A profile. J Young Pharm. 2009;1:192–4.
- 15. The Drug and Cosmetic Act, 1940 and The Drugs and Cosmetic Rules, 1945 as amended time to time. Ministry of Health and Family Welfare, Government of India. Available from: http://www.cdsco.nic.in/Drugs&CosmeticAct.pdf .

291