Human Journals

Research Article

November 2017 Vol.:10, Issue:4

© All rights are reserved by Dr. Sangita Dandwate

Use of Wild Vegetables as a Food Resource by the Tribals of Kalsubai Harishchandragarh Wildlife Sanctuary

Dr. Sangita Dandwate

Department of Chemistry, S.M.BST College Sangamner,

Ahmednagar-422605.

Submission:27 October 2017Accepted:5 November 2017Published:30 November 2017

www.ijppr.humanjournals.com

Keywords: wild vegetables, Kalsubai Harishchandragarh Wildlife Sanctuary, Proximate analysis.

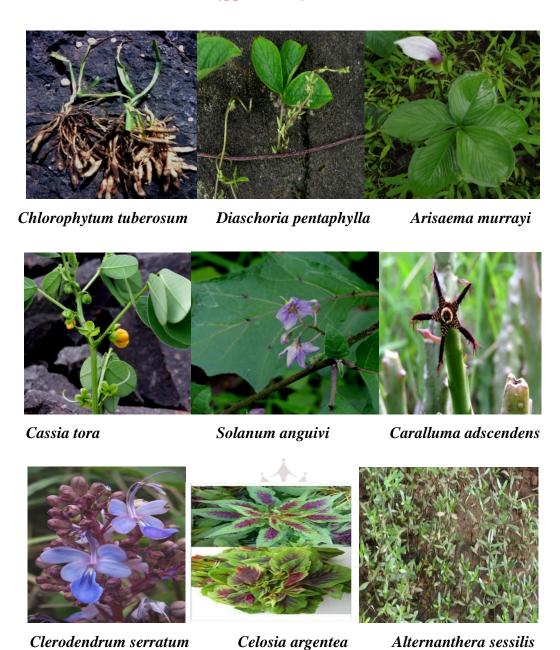
ABSTRACT

Kalsubai, Harishchandragarh and Ratangarh forest area have been declared as 'Kalsubai, Harishchandragarh Wild Life Sanctuary' from 25 February 1986, vide Government of Maharashtra, resolution No. WLP-1085/ CR-75/F.5 -IV. The total area of Kalsubai- Harishchandragarh Wildlife Sanctuary is 361.71 sq. km. (36171.03 hectares). Out of total area, 17119.86 hectares are forest, 2884.17 hectares protected forest and 16167 hectares non-forest area. Before the declaration of wildlife sanctuary, this area was a part of Rajur forest range of A' Nagar District. The study area is mostly hilly and has a tribal setup. Mahadeo Koli and Thakar are the main tribal communities, residing in the area. Agriculture and forest are the main sources of livelihood of the people. Majority of the tribes work in their fields. People rear livestocks like cattle, goats, and poultry. They also collect minor food products from forest to meet their daily needs

INTRODUCTION

Wild edible plants are those plants that are collected from uncultivated resources for human consumption ^{1,2} These plants are bestowed with one or more parts that can be used for nutrition if gathered at the proper growth stage and prepared appropriately ³ part of livelihood strategies throughout the world ⁴ Furthermore, wild edible plants are an important source of vegetables, fruits, tubers and nuts which are relevant for many people in ensuring food security and balancing the nutritional value of diets(Heywood, 2011) vegetables as a source of micronutrients in many tropical areas is significant in small children's diet to ensure normal growth and intellectual development ⁵ .The Western Ghats of Maharashtra covers an area of 52,000 km² ⁶ .Keeping this in view, the present study was conducted as the first ever attempt from the region to explore and identify the vegetables used by the people living in the study area⁷

MATERIALS AND METHODS


The methodology will involve literature search, discussion with the concern experts and organizations working on the field visits will be undertaken in different seasons along with tribal people for collection wild vegetables. Collected plants will be identified with experts using Floras; moreover, photographs of the plants will be taken fine powder for further analysis.

The proximate analyses (moisture, ash, crude fats, proteins, and carbohydrates) of all the samples will be determined using prescribed methods (AOAC 1990). The micronutrient contents, namely, Ca, Fe, Na, and K will be evaluated from the selected vegetables.

Table 1. Plant used as vegetable by tribal and villager of Kalsubai-Harichandra Garh wildlife sanctuary

Sr. No.	Botanical Name	Family	Vernacular	Growth	Parts used
_			Name	Habit	
1	Arisaema murrayi (Grah.) Hook.	Araceae	Diva-kand	Herb	Tuber
2	Argyreia nervosa (Burm.f.) Boj.	Convolvulaceae	Samudrashok	Climbers	Leave
3	Boerrhavia diffusa	Nyctaginaceae	Vasu	Herb	Leaves
4	Caralluma adscendens R.Br.	Asclepiadaceae	Shidadmakad	Herb	Stem
5	Alternanthera sessilis	Amaranthaceae	Getha	Herb	Leaves
6	Cassia tora L.	Caesalpiniacea	Tarota	Herb	Leaves,unripe fruit
7	Celosia argentea L.	Amaranthaceae	Kurdu	Herb	Leaves
8	Ceropegia bulbosa	Asclepiadaceae	Kharpudi	Climber	Tuber
9	Chlorophytum	Liliaceae	Kolu	Herb	Tuber
10	Clerodendrum serratum (L.) Moon.	Verbenaceae	Bharangi	Herb	Leaves
11	Colocasia esculenta	Araceae	Alu	Herb	Leaves, Tuber
12	Coccinia indica	Cucurbitaceae	Tondli	Climber	Fruit
13	Cordia dichotoma	Boraginaceae	Bhokar	Tree	Fruit
14	Digera muricata (L.) Mart	Amaranthaceae	Kundursa	Herb	Young fruit
15	Dioscorea bulbifera L.	Dioscoreaceae	Aniv/Karanda	Climber	Bulbils
16	Ipomoea aquatica	Convolvulaceae	Nalichi- bhaji	Climber	Leaves
17	Momordica dioica Roxb. Ex. Wild.	Cucurbitaceae	Kartule	Climber	Fruits
18	Oxalis corniculata L.	Oxalidaceae	Ambushi	Herb	Whole plant
19	Rivea	Convolvulaceae	Phand- bhaji	Climber	Leaves
20	Smithia bigemina	Papilionaceae	Kawala	Herb	Leaves
21	Smithia purpurea	Papilionaceae	Bhrki	Herb	Leaves
22	Solanum anguivi Lam.	Solanaceae	Ranwangi	Herb	Fruits

Some selected plant

Table 2: Proximate analysis of selected wild vegetables

Sr. No.	Parameter	Clerodendrum serratum L.	Alternanthera sessilis	Celosia argentea L.
1	Moisture (%)	6.46±0.49	4.62±0.42	6.6±0.3
2	Ash content (%)	7.31±0.33	20.43±0.77	18.16±0.66
3	Energy value (Kcal/100g)	447.33±15.63	301.66±14.50	301.66±14.50
4	Protein (%)	16.47±0.32	13.96±0.60	22.3±0.55
5	Carbohydrate (%)	69.43±0.90	61.4±0.87	54.26±3.47
6	Crude Fiber (%)	16.93±0.61	10.36±0.70	14.33±0.55
7	Fat (%)	0.15±0.035	0.27±0.04	0.11±0.01

RESULT AND DISCUSSION

Nutritional composition

The observed mean value of carbohydrates (69.43%) in *Clerodendrum serratum* was higher (Table 1) than the contents in *Alternanthera sessilis* (61.40%) and *Celosia argentea* (54.26%). These comparisons showed than *Clerodendrum serratum* is relatively a good source of carbohydrates and the protein content was not very high in all samples. Celosia argentea was observed with highest protein contents (22.3%) Fats results demonstrated that *Alternanthera sessilis* with (0.27%) highest percentage compared to other two plant samples.

Celosia argentea has the highest mean moisture content 6.6% and Alternanthera sessilis have the lowest contents of 4.62% moisture. In our samples, the ash contents range between 7.31% (Clerodendrum serratum) to 20.43% (Alternanthera sessilis)

Table 3. Micro and macro nutrient composition in mg/100 gram

Sr. no.	Parameter (mg/100g)	ClerodendrumSerratum L.	Alternanthera sessilis	Celosia argentea L
1	Na	75.73±0.55	104.67±7.63	1040.33±34.99
2	K	1582.33±41.23	2460±48.87	1877.33±15.94
3	Ca	930±16.9	1036.33±25.77	1617±18.52
4	Mg	752±11.33	1282.66±13.01	2269.33±45.65
5	Mn	3.57±0.20	35.27±0.70	21.6±0.62
6	Fe	211±15.71	7782.33±51.20	483.33±16.62
7	Со	0.042±0.005	0.63±0.046	0.43±0.058
8	P	177±9.0	125.67±7.02	176.33±13.65

Macronutrients and Micronutrients

Results indicated that high concentrations of calcium (Ca), Magnesium (Mg) and sodium (Na) have been found in *Celosia argentea*. Moreover low concentrations of Ca, Mg and Na were observed in *Clerodendrum serratum* (Table 2). The identified Potassium (k) in the regional species i.e. 1582.33mg/100gm (*Clerodendrum serratum*) and 1877.33 mg/100gm

(Celosia argentea). However, Alternanthera sessilis shows much increase in K concentration (2460 mg/100g). Result showed highest concentrations of Mn, Fe, and Co vegetable samples were found in Alternanthera sessilis, highest concentration of phosphorus was found in Celosia argent and lowest values of Mn, Fe, Co were recorded in Clerodendrum serratum

- Such type of work gives the data of wild vegetables used by tribes from the study area.
- It will be good practice for health.
- It will be helpful for researchers and students
- Study creates awareness about conservation of wild vegetables of study area
- It will be a documentary of traditional knowledge on diet for future generation.

REFERENCES

- 1. Heywood VH. (2011.) Ethnopharmacology, food production, nutrition and biodiversity conservation: Towards a sustainable future for indigenous peoples. Journal of Ethnopharmacology, 137(1):1–15
- 2. Ghorbani A, Langenberger G, Sauerborn J. (2012.) A comparison of the wild food plant uses knowledge of ethnic minorities in Naban River Watershed National Nature Reserve, Yunnan, SW China. Journal of Ethnobiology and Ethnomedicine, 8:17.
- 3. Kallas J. (2010.) Edible wild plants: Wild foods from dirt to plate. Gibbs Smith publication, Layton, Utah.
- 4. Cunningham A.(2001.) Applied ethnobotany: People, wild plant use, and conservation. Earthscan Publication, London
- 5. FAO. (2010.) The state of food insecurity in the world: addressing food insecurity in protracted crises. Food and Agriculture Organization of the United Nations, Rome.
- 6. Natarajan B, Paulsen BS. (2000.) An Ethnopharmacological Study from Thane District, Maharashtra, India: Traditional Knowledge Compared With Modern Biological Science. Pharmaceutical Biology, 38: 139–151.
- 7. Petkar AS, Wabale AS, Shinde MC.(2002.)Some Ethnomedicinal Plants in the tribal areas of Akole and Sangamner talukas of Ahmednagar District (M.S) Journal of Indian Botanical Society, 81: 213-215.
- 8. Wabale AS, Petkar AS. (2005.) Ethnomedicinal Plants Used Against Jaundice by the Tribals of Akole Taluka (M.S)Journal of Phytology Research,18 (2): 259-261.
- 9. A.O.A.C. (1990.) Official method of analysis, the association of analytical chemists.15 $^{\rm th}$ ed.Washington D.C. USA.1121-1150