IJPPR INTERNATIONAL JOURNA

INTERNATIONAL JOURNAL OF PHARMACY & PHARMACEUTICAL RESEARCH An official Publication of Human Journals

Human Journals **Research Article** September 2018 Vol.:13, Issue:2 © All rights are reserved by Ramya Sree Borra et al.

Analytical Method Development and Validation for the Estimation of Guaifenesin and Dextromethorphan by RP-HPLC

A Pr

HUMAN

CEUTICAL RESEARCI

Ramya Sree Borra*, K. Nagaraju

SIR C.R.Reddy College Of Pharmaceutical Sciences, Santhinagar, Eluru 534007 AP

Submission:	22 August 2018
Accepted:	29 August 2018
Published:	30 September 2018

www.ijppr.humanjournals.com

Keywords: Guaifenesin, Dextromethorphan, High performance liquid chromatography, Validation

ABSTRACT

Guaifenesin and Dextromethorphan^[1] was Separation of successfully achieved THERMO, C18, 250X4.6mm, 5µm,or equivalent in an isocratic mode utilizing 0.1M KH₂PO₄ : Methanol (60:40) at a flow rate of 1.0ml/min and eluate was monitored at 280nm, with a retention time of 3.259 and 4.164 minutes respectively using RP-HPLC method for simultaneous estimation of bulk and pharmaceutical formulations. The method was validated and their response was found to be linear in the drug concentration range of 50µg/ml to150 µg/ml for Guaifenesin and 50µg/ml to150 µg/ml for Dextromethorphan. The values of the correlation coefficient were found to 0.999 for Guaifenesin and 1 for Dextromethorphan respectively. The LOD and LOQ for Guaifenesin were found to be 0.597 and 1.991 respectively. The LOD and LOQ for Dextromethorphan were found to be 0.1072 and 0.3572 respectively. The method was extensively validated according to ICH guidelines ^[2] for Linearity, Accuracy, Precision, Specificity and Robustness.

INTRODUCTION:

Guaifenesin is an expectorant commonly used in the clearance of mucus from the airways also a centrally acting skeletal muscle relaxant. Chemical name of Guaifenesin; 93-14-1; Guaifenesin; Glycerol guaiacolate; GLYCERYL GUAIACOLATE; Guaifenesin^[4]. It act as an expectorant by increasing the volume and reducing the viscosity of secretions in the trachea and bronchi.

Dextromethorphan is a drug of morphinan class with sedative, dissociative and Stimulant properties acts centrally (meaning that it acts on the brain) as opposed to locally (on the respiratory tract). It elevates the threshold for coughing, without inhibiting ciliary activity ^{[5].} Dextromethorphan is rapidly absorbed from the gastrointestinal tract and converted into the active metabolite dextrorphan in the liver by the cytochrome P450 enzyme CYP2D6.

EXPERIMENTAL PROCEDURE:

Instruments:

WATERS HPLC, Model: Waters 2695, Photodiode array detector (PDA), with an automated sample injector ^[6], Electronic balance, Ultra-sonicator, Heating mantle, pH meter.

Reagents:

Potassium Dihydrogenphosphate (KH₂PO₄), Dipotassium hydrogen phosphate (K₂HPO₄), Water, Methanol, Orthophosphoric acid (OPA), Guaifenesin, Dextromethorphan.

Standard and sample solutions:

Standard: Accurately weighed quantity of 400mg Guaifenesin and 20mg of Dextromethorphan was taken in a 100ml volumetric flask and 10 ml of methanol was added and made up with methanol to 100ml. Further dilutions were made with water and methanol to get working standard solutions of $100\mu g/ml$.

Sample:20 tablets were weighed and crushed, from the powdered tablets, weighed accurately about 980.00mg (400mg Guaifenesin and 20mg of Dextromethorphan) into a 100ml volumetric flask and 10 ml of Methanol was added and made up with methanol to 100ml. Further dilutions were made with water and methanol to get working standard solutions of 100μ g/ml.

Separately injected both the standard ^[7] (5 injections) and sample preparations (1injection) into the chromatographic system and recorded the peak area responses.

RESULTS AND DISCUSSION:

Method Development:

Parameters	Optimized Method		
Mobile Phase	K ₂ HPO ₄ : Methanol (60:40)		
Column	THERMO, C ₁₈ , 250X 4.6mm, 5μm		
Flow Rate	1.0ml/Min		
Temperature	25°C		
Wavelength	280nm		
Injection Volume	10µl		
Retention Time	Gua:3.259 Dex: 4.164 min		

Validation Parameters ^[8]: System suitability, Accuracy, Linearity, Precision, LOD, LOQ, Robustness, Specificity.

SYSTEM SUITABILITY:

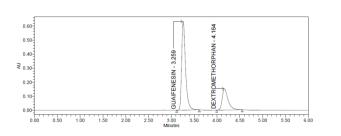
Tailing factor for the peaks due to Guaifenesin and Dextromethorphan in standard solution should not be more than 2.0. Theoretical plates for the Guaifenesin and Dextromethorphan peaks in standard solution should not be less than 2000.

PRECISION:

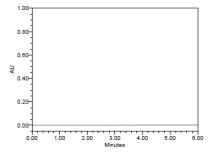
% RSD of peak areas was calculated for various run. Percentage relative standard deviation (%RSD) was found to be less than 2% which proves that method is precise.

ACCURACY:

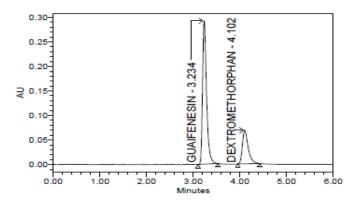
The measured value was obtained by recovery test. Spiked amount of both the drug were compared against the recovery amount. % Recovery was 99% for Guaifenesin and 100.00% for Dextromethorphan. All the results indicate that the method is highly accurate ^[9].


LINEARITY:

The linearity of the method was determined at five concentration levels from $50-150(\mu g/ml)$. The calibration curve was constructed by plotting peak area versus concentration the slope and intercept values of Guaifenesin Y= 43363x & R²=1 and Dextromethorphan Y=23378x & R²=0.999.


ROBUSTNESS^[10]:

The results of Robustness of the present method had shown that changes made in the Flow and Temperature did not produce significant changes in analytical results.


CHROMATOGRAMS:

Standard chromatogram

Blank Chromatogram

Sample chromatogram

Table 1: System suitability data for guaifenesin and dextromethorphan

Parameter	Guaifenesin	Dextromethorphan	Acceptance criteria
Retention time	3.259	4.164	+-10
Theoretical plates	7596	5595	>2500
Tailing factor	1.45	1.53	<2.00
% RSD	0.2	0.5	<2.00

SPECIFICITY:

Table 2: Specificity data for Guiafenesin and Dextromethorphan

	HUMAN						
S. No.	Sample name	Guaifenesin area	Rt	Dextromethorphan Area	Rt		
1	Standard	3726649	3.359	1341704	4.164		
2	Sample	3739051	3.250	1322868	4.134		
3	Blank	-	-	-	-		
4	Placebo	-	-	-	-		

PRECISION:

Table 3(A): Precision Data for Guaifenesin

S. No.	RT	Area	% Assay
injection1	3.250	3739051	100
injection2	3.250	3739650	100
injection3	3.242	3732973	99
injection4	3.242	3732125	99
injection5	3.246	3737009	100
injection6	3.243	3735485	100
Mean			100
Std. Dev.			0.8
% RSD			0.8

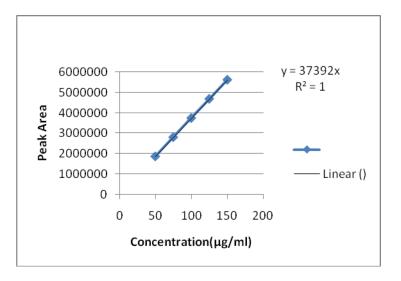
S. No.	RT	Area	% Assay
injection1	4.134	1322868	100
injection 2	4.132	1326738	100
injection 3	4.116	1321671	100
injection 4	4.118	1322735	100
injection 5	4.122	1321325	100
injection 6	4.113	1320900	100
Mean			100
Std. Dev.			0.16
%RSD			0.16

Table 3(B): Precision Data for Dextromethorphan

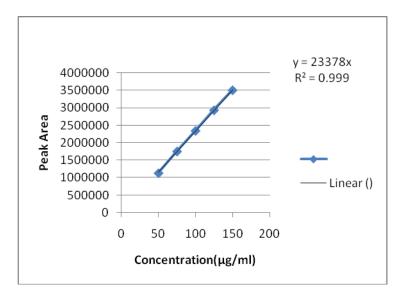
ACCURACY:

Table 4(A): Accuracy data for dextromethorphan

S. No.	Accuracy Level	Injection	Sample area	RT	% Recovery
		1 Juste	662941	4.102	
1	50%	2	662147	4.099	
1		-3 M	662043	4.095	100
		1	1325072	4.105	
2		2	1326464	4.100	100
2	100%	3	1326207	4.099	100
		1	1980940	4.102	
3	150%	2	1980145	4.103	
5	150%	3	1982320	4.105	99


Table 4(B): Accuracy data for Guaifenesin

S. No.	Accuracy Level	Injection	Sample area	RT	% Recovery
		1	1866611	3.234	
1	50%	2	1865356	3.233	
1		3	1865316	3.233	99
		1	3734210	3.244	
2		2	3738762	3.240	
2	100%	3	3739706	3.241	100
		1	5607485	3.244	
2	1500/	2	5601456	3.248	
3	150%	3	5605099	3.248	100


Citation: Ramya Sree Borra et al. Ijppr.Human, 2018; Vol. 13 (2): 89-98.

LINEARITY:

Linearity plot of Guaifenesin

Linearity plot of Dextromethorphan

Table 5(A): Linearity data for Dextromethorphan

Sr. No.	Conc(µg/ml)	RT	Area
1.	50	4.078	1125262
2.	75	4.086	1750061
3.	100	4.095	2342288
4.	125	4.099	2933934
5.	150	4.098	3510301
(r ²)			1.0

Sr. No.	Conc (µg/ml)	RT	Area
1.	50	3.226	1865913
2.	75	3.234	2802714
3.	100	3.238	3737900
4.	125	3.243	4676782
5.	150	3.246	5609376
(r ²)			0.999

Table 5(B): Linearity data for Guaifenesin

ROBUSTNESS:

Table 6(A): Robustness data for Guaifenesin

Parameter	RT	Theoretical plates	Tailing Factor
Decreased flow	4.034	8447	1.49
rate(0.8ml/min)			
Increased flow rate(1.2ml/min)	2.693	7155	1.46
Decreased temperature $(20^{\circ}c)$	4.037	8570	1.49
Increased temperature $(30^{\circ}c)$	2.701	7237	1.47

Table 6(B): Robustness data for Dextromethorphan

HUMAN					
Parameter	RT	Theoretical plates	Tailing factor		
Decreased flow rate (0.8ml/min)	5.054	5355	1.56		
Increased flow rate (1.2ml/min)	3.404	5940	1.54		
Decreased temperature(20 [°] c)	5.058	5451	1.56		
Increased temperature $(30^{\circ}c)$	3.437	6019	1.55		

LOD: Guaifenesin = 0.597, Dextromethorphan = 0.1072

LOQ: Guaifenesin = 1.991, Dextromethorphan = 0.3572

S. NO.	PARAMETER	RESULT	RESULT	ACCEPTENCE
		(Guaifenesin)	(Dextromethorphan)	CRITERIA
1	System suitability Theoretical plates Asymmetry Retention time %RSD	7596 1.45 3.259 0.2	5595 1.53 4.164 0.5	Not less than 2500 Not more than2 Not more than 2%
2	Specificitya) Blank interferenceb) Placebo interference	Specific	Specific	Specific
3	Method precision(%RSD)	0.08	0.16	Not more than 2.0%
4	Linearity parameter Slope Intercept Correlation coefficient(r ²)	50-150 mcg/ml 0.999	50-150 mcg/ml 1.00	Not more than 0.999
5	Accuracy(Mean % recovery) 50% 100% 150%	99% 100% 100%	100% 100% 99%	97.00– 103.00%
6	Robustness a) Flow rate variation b) Temperature variation	All the system suitability parameters are within the limits.	All the system suitability parameters are within the limits.	

SUMMARY TABLE:

CONCLUSION:

For routine analytical purpose it is desirable to establish methods capable of analyzing huge number of samples in a short time period with good robustness, accuracy and precision without any prior separation steps hence the suggested method is more reliable using Rp-HPLC.

ACKNOWLEDGEMENT:

I am grateful to SIR CRR College Of Pharmaceutical Sciences, Eluru for providing the necessary facilities.

REFERENCES:

1. W. Zhang, T. Wang, L. Qin *et al.*, "Neuroprotective effect of dextromethorphan in the MPTP Parkinson's disease model: role of NADPH oxidase," The FASEB Journal, vol. 18, no. 3, pp. 589–591, 2004.

2. Dextromethorphan, NHTSA.

3. "Child deaths lead to FDA hearing on cough, cold meds," 2007.

4. B. KuKanich and M. G. Papich, "Plasma profile and pharmacokinetics of dextromethorphan after intravenous and oral administration in healthy dogs," Journal of Veterinary Pharmacology and Therapeutics, vol. 27, no. 5, pp. 337–341, 2004.

5. "Kids' cough medicine no better than placebo," San Francisco Chronicle, 2004.

6. I. M. Paul, K. E. Yoder, K. R. Crowell et al., "Effect of dextromethorphan, diphenhydramine, and placebo on nocturnal cough and sleep quality for coughing children and their parents," Pediatrics, vol. 114, no. 1, pp. e85–e90, 2004.

7. S. Görög, M. Babják, G. Balogh *et al.*, "Drug impurity profiling strategies," Talanta, vol. 44, no. 9, pp. 1517–1526, 1997.

8. B. B. Sanjay, R. K. Bharati, S. J. Yogini, and A. S. Atul, "Impurity profile: significance in active pharmaceutical ingredient," Eurasian Journal of Analytical Chemistry, vol. 2, pp. 32–53, 2007.

9. ICH, "Impurities in new drug substances Q3A (R2)," 2006.

10. ICH, "Impurities in new drug products Q3B (R2)," 2006.

