International Journal of Pharmacy & Pharmaceutical Research An official Publication of Human Journals

Human Journals **Research Article** March 2020 Vol.:17, Issue:4 © All rights are reserved by Danish Sayyad et al.

Application of Quality by Design Approach for Development and Validation of Stability Indicating RP-HPLC Method for **Rilpivirine Hydrochloride in Bulk**

Published: 30 March 2020

www.ijppr.humanjournals.com

Keywords: Quality by Design, Rilpivirine, RP-HPLC, Force Degradation, Factorial Design

ABSTRACT

The present study describes the implementation of Quality by Design approach to the development and validation of stability indicating RP-HPLC method for Rilpivirine HCl. Optimization was done by response surface methodology, applying a threelevel Box-Behnken design. Three factors selected were the Concentration of Methanol and Water (mobile phase), Flow Rate, pH. The developed chromatographic method was validated concerning the ICH Q2 (R1) guidelines for linearity, precision, range, accuracy, LOD, and LOQ. The maximum Absorbance of the drug (λ_{max}) was found to be 305 nm. The optimized method consists of mobile phase methanol: water (pH 5.2) (85: 15), and a flow rate of 0.8 ml/min, which was optimized by using design expert software. The linearity of the developed method was established over the concentration range of 20-100 µg/ml for Rilpivirine HCl with a correlation coefficient (R²) of 0.999. The percent RSD for accuracy and precision of the method was found to be less than 2%. The limit of quantitation (LOQ) 1.04µg/ml and limit of detection (LOD) of 3.16µg/ml are relatively low to permit the determination of low concentrations of the drug. Stability (Forced Degradation) studies were accomplished in various conditions like acidic, alkali, oxidation, thermal and photolytic.

INTRODUCTION

The pharmaceutical industry is constantly in search of new techniques to ensure and enhance product quality in terms of its safety, quality, and efficacy. However, still, problems with drug recall, manufacturing failure cost, scale-up issues and regulatory burden in the recent past produces a huge challenge for the industry. In the traditional approach, the product quality and performance are predominantly ensured by product testing, with limited understanding of the process and critical process parameters. Regulatory bodies are therefore focusing on implementing Quality by Design [QbD], a more precise and science-based approach that improves process understanding by reducing process variation and enabling process-control strategies.

QbD approach helps to deal with quality issues efficiently by analyzing problems and their root cause. It comprises identifying all critical attributes including process parameters and material attributes (Figure 01). These parameters help in getting better process understanding thereby resulting in the development of a robust process with the least errors. This leads to identifying a design space where all the parameters could result in quality products. Changes in any such parameters during development and lifecycle management should be looked upon as opportunities to gain additional knowledge and further support the establishment of the design space. Design space is proposed by the applicant and is subject to regulatory assessment and approval. Working within the design space is not considered as a change. Movement out of the design space is a change and would normally initiate a regulatory post approval change process.^[1-2]

Figure 01: Features of QbD

In QbD-

- > The product is designed to meet Quality.
- > The process is designed to consistently meet all critical quality attributes.
- > The impact of all material and process attributes on final product quality is understood.
- > The process is consistently evaluated and updated to meet quality.
- > Critical sources of variability are identified and controlled.
- Validated control strategies are developed.

Elements of QbD in Analytical Method

- a. Analytical Target Profile (ATP)
- b. Critical Quality Attribute (CQA)
- c. Method Design
- d. Critical Process Parameters (CPP)

- e. Risk Assessment
- f. Design Space (DS)
- g. Method Operable Design Region (MODR)
- h. Design of Experiment (DoE)
- i. Control Strategy (CS)
- j. Process Analytical Technology (PAT)
- k. Continuous Method Performance

Rilpivirine is a second-generation non-nucleoside reverse transcriptase inhibitor (NNRTI) with higher potency, longer half-life, and reduced side-effect profile compared with older NNRTIs, such as efavirenz. It is a diarylpyrimidine, a class of molecules that resemble pyrimidine nucleotides found in DNA. It binds to reverse transcriptase which results in a block in RNA and DNA- dependent DNA polymerase activities. Not a single QbD study is published for stability-indicating RP-HPLC method for estimation of rilpivirine and very few methods were published for the estimation of rilpivirine involving HPLC techniques and spectrophotometric methods. Very few HPLC techniques available in the literature discussed the stability-indicating Method development and validation. Hence we attempted to develop and validate a stability-indicating method for the estimation of rilpivirine by application of Quality by Design approach.^[3]

This analytical method aims to separate and quantify the main compound while abiding by the method performance benchmark based on regulatory desideratum's, such as linearity, accuracy, precision, robustness. Another aim is to develop an analytical method by using cost-effective mobile phases such as methanol and water.

The paramount objective of this study is to execute a QbD strategy to develop and validate an RP-HPLC method to build-in the quality in the course of method development to secure optimum method performance over the lifetime of the product.

During the literature survey, it was found that not a single study of method development by application of quality by design for Rilpivirine HCl is established even though few stability-indicating types of research were found. Chilukuri M *et al.* studied the Degradation Pathway

for Rilpivirine Hydrochloride by Validated Stability Indicating UP-LC Method with Mobile Phase Acetonitrile: 0.1M ammonium acetate buffer pH4 (50:50 v/v) and λ_{max} : 295 nm^[4]. Thota Set al. studied Estimation of Rilpivirine in bulk and pharmaceutical dosage form with Mobile Phase. Acetonitrile: potassium dihydrogen phosphate buffer(40/60 v/v) pH 2.8 and λ max: 282 nm^[5]. Ghosh S *et al.* studied Method development and validation of Rilpivirine in bulk and Tablet doses form by RP-HPLC method with Mobile phase: Acetonitrile: Phosphate buffer (60:40 v/v) and λ_{max} : 282 nm^[6].

Reddiah V *et al.* studied the Effective estimation of Rilpivirine by HPLC method in tablet dosage forms and it's in vitro dissolution assessment with Acetonitrile: Ammonium acetate buffer (55:45 v/v) and λ_{max} : 280 nm^[7]. Dr. Yashoda *et al.*studied RP-HPLC method development and validation of Rilpivirine with Acetonitrile: Acetate buffer (pH=4.0) = 65:35 (v/v) and λ_{max} : 260 nm^[8].

The optimization was done by using only Methanol and Water as a mobile phase that made our method cost-effective as relative to other methods found during the literature survey.

MATERIALS AND METHODS:

Following table 01 is the list of reagents and chemicals used.

Sr. No.	Reagents and Chemicals	Make	Details
1	Water	MI	HPLC grade
2	Methanol	Finar	HPLC grade
3	Triethylamine	Molychem	AR grade
4	O-Phosphoric acid	Finchem	AR grade

Table 01: List of Reagents and Chemicals Used.

Selection of mobile phase:

Following table 02 shows number of trail runs for method development.

Sr. No.	Mobile Phase	Column	λmax	Flow Rate	Inference of Method
1	Methanol: Water (90:10) pH 5	Chemsil C ₁₈	305nm	1ml/min	Rejected
2	Methanol: Water (85:15) pH 5	Chemsil C ₁₈	305nm	1ml/min	Rejected
3	Methanol: Water (75: 25) pH 5	Chemsil C ₁₈	305nm	1ml/min	Rejected
4	Methanol: Water (70: 30) pH 5	Chemsil C ₁₈	305nm	1ml/min	Rejected
5	Methanol: Water (65: 35) pH 5	Chemsil C ₁₈	305nm	1ml/min	Rejected
6	Methanol: Water (60: 40) pH 5	Chemsil C ₁₈	305nm	1ml/min	Rejected
7	Methanol: Water (80:20) pH 5	Chemsil C ₁₈	305nm	1ml/min	Accepted

Table 02: Rilpivirine Hydrochloride RP-HPLC method development trials

Optimized Chromatographic Conditions:

The following table 03 shows chromatographic conditions were established by trial and error and were kept constant throughout the method.

Table 03: Optimized Chromatographic Condition

Parameter/ Conditions	Description/Values
Column name	Chemsil C18, 250 × 4.6mm, 5µ
Detector	305 nm
Flow rate	1ml/min
Injection volume	10µ1
Column oven Temperature	Ambient
Retention time	5.1 min
Mobile Phase	Methanol: Water (80:20) pH 5

Standard Stock Solution:

Procedure:

Accurately weighed 25 mg of Rilpivirine Hydrochloride was transferred to a volumetric flask of 25 ml, Add methanol up to mark. Sonicate it to dissolve it completely. The resultant solution is used as the standard stock solution of Rilpivirine Hydrochloride (1000 ppm).

Working stock solution:

Procedure:

Remove 0.5 ml of Stock solution in 10 ml volumetric flask Dilute it with diluent to get 50 ppm solution.

Development of RP-HPLC Method with Design Space and Control Strategy determination by optimization study:

All the calculations for the contemporaneous optimization study and statistical analysis were performed using Design Expert® software (Design Expert trial version 12.0; State-Ease Inc., Minneapolis, MN, USA).

Application of Design of experiments for method optimization

Design of experiments (DOE-1): Thus, 3³ randomized response surface designs with a Box-Behnken design were used with 17 trial runs to evaluate the effect of three factors on the three key response variables. In this design 3 factors were analyzed, each at 3 levels, and experimental trials were carried out at all possible combinations. The flow rate, pH of Water, mobile phase composition were selected as independent variables and retention time (RT), Theoretical Plate number (TPN) and Asymmetric Factor were selected as dependent variables based on risk analysis. The data resulted was processed into Design Expert 12.0 software and analyzed statistically with the help of analysis of variance (ANOVA). The Translation of coded levels in actual values and probable trial runs using 3³ Box-Behnken designs are as shown in the table 04.

	С	Concentration of Factors							
Level of Variables	Flow rate (ml/min)	рН	Mobile Phase Composition (Methanol: Water)						
Low level (-1)	0.8	4.8	75:25						
Medium level (0)	1.0	5.0	80:20						
High level (+1)	1.2	5.2	85:15						

Table 04: Translation of coded levels in actual values

System Suitability Test:

The tests were performed by collecting data from five replicate injection of standard drug solution (50 ppm).

Validation of the method for analysis of Rilpivirine Hydrochloride:

Linearity:

Determination:

The linearity of the analytical method is determined by the mathematical treatment of test results obtained by the analysis of samples with analyte concentrations across the claimed range. The area is plotted graphically as a function of analyte concentration.

Preparation of standard stock solution:

25.0 mg of Rilpivirine Hydrochloride working standard was weighed accurately and transferred into a volumetric flask of 25.0 ml; methanol was added and sonicated it to dissolve. From that remove 1 ml in 10ml volumetric flask and dilute it with diluent up the mark. This solution was used to prepare a linearity solution.

Preparation of linearity solution:

Linearity was performed by diluting standard stock solutions. From stock solution aliquots of 2, 4, 6, 8, 10 ml diluted to 10ml with a diluent such that the final concentration of Rilpivirine hydrochloride in the range of 20-100ppm.

Accuracy (by Recovery method)

Preparation of standard stock solution:

25 mg of Rilpivirine Hydrochloride working standard was weighed accurately and transferred into a 25 ml volumetric flask, methanol was added and sonicated to dissolve and finally, the volume was made with diluents and mixed. The working standard concentration is 1000 μ g/ml. Remove 1ml and dilute up to 10ml with the mobile phase to give 100 μ g/ml solution.

Procedure for Preparation of sample solution:

Prepare the standard solution by taking stock solution equivalent to 50%, 100%, and 150%, each in triplicate. Inject each preparation into the HPLC system. The table 05 shows the various dilutions for Accuracy.

Table 05: Dilution table for Accuracy

Sample	Stock solution (ppm)	Sample solution (ppm)	Final volume (ml)
Accuracy 50%	50	25	10
Accuracy 100%	50	50	10
Accuracy 150%	50	75	10
	nur		

Precision:

Determination:

Prepare six different test solutions of 50 ppm test concentration from the same sample matrix of the homogeneous sample.

Preparation of standard stock solution:

25.0 mg of Rilpivirine Hydrochloride was weighed accurately and transferred into 25.0 ml volumetric flask, methanol was added and later sonicated it to dissolve. From that remove 1ml in 10ml volumetric flask and dilute it with diluent up the mark with the mobile phase to give $100\mu g/ml$ solution.

Limit of Detection (LOD) and Limit of Quantitation (LOQ):

The lowest concentration of the analyte in the sample that the method can detect but not necessarily quantify under the stated experimental conditions simply indicates that the sample is below or above a certain level.

$$LOD = 3.3 X \frac{(SD)}{s}$$

Where, SD = Standard deviation

S= Slope

$$LOQ = 10 X \frac{(SD)}{s}$$

Where SD = Standard deviation

S = Slope

Forced Degradation Study on Rilpivirine Hydrochloride by RP-HPLC:

Control sample:

An accurately weighed amount of 10 mg of Rilpivirine Hydrochloride was transferred in a clean and dry volumetric flask and 10 ml of diluents were added and sonicated to dissolve it completely and volume made up to the mark with diluents. The solution was passed through the Whatman filter paper. Pipette out 0.5 ml of solution in a volumetric flask of 10 ml and diluted up to the mark with diluent.

Acid hydrolysis:

An accurately weighed amount of 10 mg of Rilpivirine Hydrochloride was transferred in a clean and dry volumetric flask of 10 ml to which 0.1N HCL was added and made up to the mark and kept for 24 hours at room temp. From that 0.5 ml was taken in a volumetric flask of 10 ml and made up to the mark with diluents, then injected into the HPLC system and compared with the control sample.

Alkaline hydrolysis:

An accurately weighed amount of 10 mg of Rilpivirine Hydrochloride was transferred in a clean and dry volumetric flask of 10 ml to which 0.1 N NaOH added and made up to the mark and kept for 24 hours at room temp. From that 0.5 ml was taken in a volumetric flask of 10 ml and made up to the mark with diluents, then injected into the HPLC system and compared with the control sample.

Thermal degradation:

An accurately weighed amount of 10 mg of Rilpivirine Hydrochloride was transferred in a clean and dry volumetric flask of 10 ml, made up to the mark with diluent and was maintained at 70° C in an oven for 48 hours. From that 0.5 ml was taken in a volumetric flask of 10 ml and made up to the mark with diluents and injected into the HPLC system and compared with the control sample.

Oxidation with (6%) H₂O₂:

An accurately weighed amount of 10 mg of Rilpivirine Hydrochloride was transferred in a clean and dry volumetric flask of 10 ml, To which 6% H_2O_2 added and made up to the mark and kept for 24hours at room temp. From that 0.5 ml was taken in 10 ml of volumetric flask and made up to the mark with diluents, then injected into the HPLC system and compared with the control sample.

Photodegradation:

An accurately weighed amount of 20 mg of Rilpivirine Hydrochloride was transferred in a clean and dry petri dish and was kept in direct sunlight for 24 hours without interruption. Accurately weighed 10 mg of exposed drug was transferred to a clean and dry volumetric flask of 10 ml. From that 0.5 ml was taken in 10 ml of volumetric flask and made up to the mark with diluent and injected into the HPLC system and compared with the control sample.

RESULT AND DISCUSSION

Selection and Optimization of Detection Wavelength:

The λ max of Rilpivirine Hydrochloride is 305 nm.

Statistical data analysis (DOE)

Table 06 shows Summary of factor and their level selected for 3³ Box Behnken full factorial design.

Table 06: Summary of factors

Factor	Name	Units	Туре	Minimum	Maximum	Mean
А	Methanol	%	Numeric	75.00	85.00	80.00
В	Flow Rate	ml/min	Numeric	0.8000	1.20	1.0000
С	pН	unit	Numeric	4.80	5.20	5.00

Analysis of variance for the Retention Time response as the dependent variable:

A) Results for the retention time of DOE:

ANOVA for response surface linear model

The analysis of variance (ANOVA) was performed to identify significant and insignificant factors. Table 07 represents results of ANOVA for the retention time of DOE:

Table 07: ANOVA table for Retention Time

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	27.22	3	9.07	21.63	< 0.0001	
A-Methanol	18.95	1	18.95	45.18	< 0.0001	
B-Flow Rate	8.26	1	8.26	19.7	0.0007	significant
C-pH	0.0084	1	0.0084	0.02	0.8897	
Residual	5.45	13	0.4194			
Lack of Fit	4.92	9	0.5464	4.09	0.094	not significant
Pure Error	0.5341	4	0.1335			
Cor Total	32.67	16				

Sum of squares is Type III - Partial

The **Model F-value** of 21.63 implies the model is significant. There is only a 0.01% chance that an F-value this large could occur due to noise.

P-values less than 0.0500 indicate model terms are significant. In this case A, B are significant model terms. Values greater than 0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not counting those required to support hierarchy), model reduction may improve your model.

The **Lack of Fit F-value** of 4.09 implies there is a 9.40% chance that a Lack of Fit F-value this large could occur due to noise. Lack of fit is bad -- we want the model to fit. This relatively low probability (<10%) is troubling.

B) Model assessment for the retention time response as the dependent variable:

After entering the data in Design-Expert software, fit summary applied to data after which the "quadratic model" was suggested by the software. According to this model following polynomial equation was obtained. The polynomial equation in coded terms (Table 08),

Table 08: Final Equation in Terms of Coded Factors:

Retention Time =	+6.16 - 1.54 * A - 1.02 * B - 0.0324 * C

The equation in terms of coded factors can be used to make predictions about the response for given levels of each factor. By default, the high levels of the factors are coded as +1 and the low levels are coded as -1. The coded equation is useful for identifying the relative impact of the factors by comparing the factor coefficients.

C) Graphical Presentation: Retention Time:

Figure 02, 03, 04 shows different contour plots for Retention Time.

Figure 04: Contour plot for Retention Time (min) against Mobile Phase-Methanol and pH (CA)

Analysis of variance for the USP Plate Count response as the dependent variable:

A) Results for the USP Plate Count of DOE:

ANOVA for response surface linear model

The analysis of variance (ANOVA) was performed to identify significant and insignificant factors. Table 09 represents results of ANOVA for the USP Plate Count of DOE:

Table 09: ANOVA table for USP Plate Count

Source	Sum of	df	Mean	E voluo	n voluo	
Source	Squares	ui	Square	r-value	p-value	
Model	2.47E+07	3	8.23E+06	3.56	0.0447	
A-Methanol	1.60E+06	1	1.60E+06	0.6923	0.4204	
B-Flow Rate	1.88E+07	1	1.88E+07	8.12	0.0137	significant
C-pH	4.30E+06	1	4.30E+06	1.86	0.1961	Significant
Residual	3.01E+07	13	2.32E+06			
Lack of Fit	3.00E+07	9	3.34E+06	150	0.0001	significant
Pure Error	88935.94	4	22233.99			
Cor Total	5.48E+07	16				

Sum of squares is Type III - Partial

The **Model F-value** of 3.56 implies the model is significant. There is only a 4.47% chance that an F-value this large could occur due to noise.

P-values less than 0.0500 indicate model terms are significant. In this case, B is a significant model term. Values greater than 0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not counting those required to support hierarchy), model reduction may improve your model.

The **Lack of Fit F-value** of 150.00 implies the Lack of Fit is significant. There is only a 0.01% chance that a Lack of Fit F-value this large could occur due to noise. A significant lack of fit is bad -we want the model to fit.

B) Model assessment for the retention time response as the dependent variable:

After entering the data in Design-Expert software, fit summary applied to data after which the "quadratic model" was suggested by the software. According to this model following polynomial equation was obtained. The polynomial equation in coded terms (Table No. 10):

Table 10: Final Equation in Terms of Coded Factors:

	numan
USP Plate Count =	+10173.71 + 447.66 * A - 1532.88 * B + 733.16 * C

The equation in terms of coded factors can be used to make predictions about the response for given levels of each factor. By default, the high levels of the factors are coded as +1 and the low levels are coded as -1. The coded equation is useful for identifying the relative impact of the factors by comparing the factor coefficients.

C) Graphical Presentation: USP Plate Count

Figure 05, 06, 07 shows different contour plots for USP Plate Count.

Figure 06: Contour plot for USP Plate Count against Mobile Phase-Methanol and Flow Rate (BA)

48

Figure 07: Contour plot for USP Plate Count against Mobile Phase-Methanol and pH (CA)

Analysis of variance for the USP Tailing:

A) Response as a dependent variable:

ANOVA for response surface linear model

The analysis of variance (ANOVA) was performed to identify significant and insignificant factors. Table 11 represents results of ANOVA for the USP Tailing Factor of DOE:

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	0.0029	9	0.0003	4.49	0.0301	
A-Methanol	0	1	0	0	1	
B-Flow Rate	0.0003	1	0.0003	4.33	0.0759	
C-pH	0.0003	1	0.0003	4.33	0.0759	significant
AB	0.0001	1	0.0001	1.39	0.2775	
AC	0.0009	1	0.0009	12.48	0.0096	
BC	0	1	0	0.3465	0.5746	
A ²	0.0004	1	0.0004	5.55	0.0507	
B ²	0.0003	1	0.0003	3.51	0.1033	
C ²	0.0006	1	0.0006	8.76	0.0211	
Residual	0.0005	7	0.0001			
Lack of Fit	0.0004	3	0.0001	7.08	0.0445	Significant
Pure Error	0.0001	4	0			
Cor Total	0.0034	16				

Table 11: ANOVA table for USP Tailing Factor

Sum of squares is **Type III - Partial**

The **Model F-value** of 4.49 implies the model is significant. There is only a 3.01% chance that an F-value this large could occur due to noise.

P-values less than 0.0500 indicate model terms are significant. In this case AC, C^2 are significant model terms. Values greater than 0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not counting those required to support hierarchy), model reduction may improve your model.

The **Lack of Fit F-value** of 7.08 implies the Lack of Fit is significant. There is only a 4.45% chance that a Lack of Fit F-value this large could occur due to noise. A significant lack of fit is bad -we want the model to fit.

B) Model assessment for the retention time response as the dependent variable:

After entering the data in Design-Expert software, fit summary applied to data after which the "quadratic model" was suggested by the software. According to this model following polynomial equation was obtained. The polynomial equation in coded terms (Table 12),

Table 12: Final Equation in Terms of Coded Factors:

USP	+1.07 + 0.0000 * A - 0.0062 * B + 0.0062 * C - 0.0050 * AB - 0.0150 * AC -	+ 0.0025
Tailing =	$* BC - 0.0098 * A^2 + 0.0077 * B^2 - 0.0122 * C^2$	

The equation in terms of coded factors can be used to make predictions about the response for given levels of each factor. By default, the high levels of the factors are coded as +1 and the low levels are coded as -1. The coded equation is useful for identifying the relative impact of the factors by comparing the factor coefficients.

C) Graphical Presentation: USP Tailing

Figure 08, 09, 10 shows different contour plots for USP Tailing.

Figure 08: Contour plot for USP Tailing against Flow Rate and Mobile Phase-Methanol (AB)

Figure 10: Contour plot for USP Tailing against pH and Flow Rate (BC)

Developed Method Operable Design Region:

Design Space for study DOE:

The graphical optimization done by with the help of Design-Expert software provided the base to define the design space as shown in following Figure 11, 12, 13.

Figure 11: Overlay plot for Flow Rate and Mobile Phase-Methanol (AB)

Figure 12: Overlay plot for pH and Mobile Phase-Methanol (AC)

Figure 13: Overlay plot for pH and Flow Rate (BC)

This plot elaborates that the optimized values of both independent variables in the required target range of Retention Time, USP Plate Count and USP Tailing lie within the yellow region which is the useful optimum region where the design space can be determined whereas the grey colored region is restricted to achieve the target response value of a dependent variable.

Optimized Method gave by the software:

(Injection Volume: 10 µL)

Table 13 represents the final optimised conditions.

Table 13: Optimized Method

Flow Rate	рН	Mobile Phase Composition (mL)
0.8 ml/min	5.2	Methanol: Water (85:15)

System Suitability:

Rilpivirine HCl						
Sample Name (50ppm)	Retention Time (min)	Area	USP Plate count	Tailing factor		
Standard 1	5.06	5241174	9126	1.07		
Standard 2	5.31	5277168	9070	1.08		
Standard 3	5.31	5247607	8976	1.07		
Standard 4	5.29	5134424	8857	1.07		
Standard 5	5.23	5110761	9199	1.07		
	AVERAGE	5202227	-	-		
	SD	74423.86	-	-		
	%RSD	1.43	-	-		

Table 14: System suitability test for Rilpivirine HCl

Validation of the Developed Method

Chromatographic conditions

The following table 15 shows chromatographic conditions were established by trial and error and were kept constant throughout the experimentation.

Table 15: Optimized Conditions for Validation

HPLC	Waters
Detector and pump no.	2489 UV And 1525 binary pump
Software	BREEZE 2
Column	4.6 x 250 mm in length
Particle size packing	5 μm
Stationary phase	C ₁₈ (CHEMSIL ODS)
Mobile phase	Methanol: Water (85:15) ml
Detection Wavelength	305 nm
Flow Rate	0.8 ml/min
Temperature	Ambient
Sample size	10 µl

i. Linearity:

The graph 01 shows plot for linearity and Table 16 represents results for linearity

Graph 01: Linearity Graph of Rilpivirine HCl

Conc (ppm)	Peak Area I	Peak Area II	Peak Area III	Mean Area		
20	2947292	2839364	2898563	2895073		
40	4968585	4846883	4931130	4915533		
60	6797807	6411167	8354429	7187801		
80	8157898	9576720	9555193	9096604		
100	11343747	10508942	11724621	11192437		
Equation			y = 103879x + 824750			
Slope	Slope			103879		
Intercept		824750				
Correlation	Coefficient (R ²	0.999				

 Table 16: Result and Statistical Data for Linearity

Accuracy:

It was done by a recovery study. Sample solutions were prepared by spiking at about 50 %, 100 %, and 150 % of the specification limit to Placebo and analyzed by the proposed HPLC method. The results are shown in table 17.

Preparation of recovery stock solution: 25 mg of Rilpivirine Hydrochloride working standard was weighed accurately and transferred into 25 ml volumetric flask, methanol was added and sonicated to dissolve and finally the volume was made with diluents and mixed. The working standard concentration is 1000 μ g/ml. Remove 1ml and dilute up to 10ml with the mobile phase to give 100 μ g/ml solution.

Table 17:	Result	and	statistical	data	of	Accuracy

Sr. No.	Conc. Level	Conc. (µg/mL) Sample solution	Conc. (µg/mL) for stock solution	Area (VIN)	MEAN AREA ± SD	%RSD	AREA OF STD	% RSD
		50	25	5985141	5573350 +			
1	1 50%	50	25	5972736	11/82.7	0.19	6018000	99.25
		50	25	5962201	11402.7			
		50	50	11147639	11171987			
2	100%	50	50	11238758	± (58527.72	0.52	11212650	99.63
		50	50	11129563				
		50	75	16274778	16313616			
3 150	150%	50	75	16312048	±	0.24	16406600	99.43
		50	75	16354021	39644.75			

Precision:

HUMAN

Preparation of standard solution:

Weigh accurately about 25 mg of Rilpivirine Hydrochloride and transferred to 25ml Methanol (Sonicate it to dissolve completely) to give 1000 ppm stock solution. From that stock, the solution takes 0.5 ml and dilute to 10ml with the mobile phase get 50 ppm solution. Table 18 shows results for intraday precision.

Table 18: Result and Statistical data For Intraday Precision

Sr. No.	Conc. (ppm)	Area	Mean	SD	% RSD
1	50	5049224			0.55
2	50	5019312	-		
3	50	5101309	5048752	28231.07	
4	50	5031275	0010702		
5	50	5041717			
6	50	5049677			

I) INTRADAY PRECISION

II) INTERDAY PRECISION

Table 19 shows results for interday precision

Table 19: Result and Statistical data For Interday Precision

Sr. No.	Conc. (ppm)	Area	Mean	SD	% RSD
1	50	5049874			
2	50	4986183			
3	50	5028256	5024572	58058.52	1.15
4	50	4931130			
5	50	5092654			
6	50	5060384			

Limit of Detection (LOD):

It may be calculated based on the standard deviation (SD) of the response and slope of the calibration curve(S).

Graph 02 shows the plot of LOD and LOQ and Table 20 represents result for LOD and LOQ.

49

Rilpivirine HCl							
Sr. No.	Concentration (µg/ml)	RT (min)	Area (µV*sec)	USP Plate Count	USP Tailing		
1	2	5.256	190172	10463	1.09		
2	4	5.200	419467	9453	1.08		
3	6	5.231	619229	9414	1.09		
4	8	5.271	816586	10144	1.08		
5	10	5.178	1012119	8940	1.08		
	Correlation Coefficient	t	0.999				
	Slope			101852			
SD			322234.7				
LOD (µg/ml)				1.04			
LOQ (µg/ml)			Å .	3.16			

Table 20: Result and statistical data of LOD & LOQ of Rilpivirine HCl

Graph 02: Calibration Curve for LOD & LOQ of Rilpivirine HCl

50

$$LOD = 3.3 X \frac{(SD)}{s}$$

Where, **SD**= Standard deviation

S= Slope

Calculation of Rilpivirine Hydrochloride:

$$LOD = 3.3 X \frac{(32223.7)}{101852}$$

= 1.04

$$LOD = 1.04 \ \mu g/ \ ml$$

LOD of Rilpivirine Hydrochloride was found to be 1.04 µg/ ml.

Limit of Quantitation (LOQ):

It may be calculated based on the standard deviation (SD) of the response and slope of the curve(S).

Where, SD = Standard deviation

S= Slope

Calculation of Rilpivirine Hydrochloride:

$$LOQ = 10 X \frac{(32223.7)}{101852}$$

= 3.16

$$LOQ = 3.16 \, \mu g/ml$$

LOQ of Rilpivirine Hydrochloride was found to be 3.16µg/ml

5(

Forced degradation study:

1. Control sample

Figure 14 shows chromatogram of control sample and Table 22 represents chromatogram data for control sample.

2. Acid degradation

Figure 15 shows chromatogram of acidic sample and Table 23 represents chromatogram data for acidic sample.

3. Base degradation

Figure 16 shows chromatogram of basic sample and Table 24 represents chromatogram data for basic sample.

4. Peroxide degradation

Figure 17 shows chromatogram of oxidation sample and Table 25 represents chromatogram data for oxidation sample.

HUMAN

5. Thermal degradation

Figure 18 shows chromatogram of thermal sample and Table 26 represents chromatogram data for thermal sample.

6. Photolytic degradation

Figure 19 shows chromatogram of photolytic sample and Table 27 represents chromatogram data for photolytic sample.

Following table 21 shows results for stability study:

50

Sr.	Strong condition	Degradation	Dool: anoo	% of	% Active drug
No.	Stress condition	time	reak area	Degradation	remaining
1	Control	-	5163031	-	-
2	Acid (1N HCl)	24 hrs.	4763117	7.75	92.25
3	Base (1N NaOH)	24 hrs	5048132	2.23	97.77
4	Oxidation(6%H ₂ O ₂)	24 hrs	4590208	11.10	88.90
5	Thermal (70 °C)	24 hrs	4354691	15.66	84.34
6	Photolytic	24hrs	4995713	3.25	96.75

Table 21: Result and Statistical data for Stability study of Rilpivirine HCl

Control sample:

- ➤ Wavelength: 305 nm
- Mobile phase: Methanol: Water (85:15) pH 5.2
- Sample volume: 10µl
- ► Flow rate: 0.8ml/min

Figure 14: Chromatogram of Control Sample

Table 22: Chromatogram Data for Control Sample

Sr. No.	Compound	RT (min)	Area (µV*sec)	USP Plate Count	USP Tailing
1	Rilpivirine HCl	5.0	5163031	9548	1.07

Acidic degradation:

- ➢ Wavelength: 305 nm
- Mobile phase: Methanol: Water (85:15) pH 5.2
- ➢ Sample volume : 10µl
- ► Flow rate: 0.8ml/min

Figure 15: Chromatogram of Acidic Sample

 Table 23: Chromatogram Data for Acidic Sample

Sr. No.	Compound	RT (min)	Area (µV*sec)	USP Plate Count	USP Tailing
2	Rilpivirine HCl	6.3	4763117	4767	0.9

Basic degradation:

- ➤ Wavelength: 305 nm
- Mobile phase: Methanol: Water (85:15) pH 5.2
- ➢ Sample volume : 10µl
- ► Flow rate: 0.8ml/min

5(

Figure 16: Chromatogram of Basic Sample

Table 24: Chromatogram Data for Basic Sample

Sr. No.	Compound	RT (min)	Area (µV*sec)	USP Plate Count	USP Tailing
3	Rilpivirine HCl	5.5	5048132	8896	1.09

Oxidation degradation:

➢ Wavelength: 305 nm

- ➢ Sample volume : 10µl
- ► Flow rate: 0.8ml/min

Figure 17: Chromatogram of Oxidation Sample

50

Sr. No.	Compound	RT (min)	Area (µV*sec)	USP Plate Count	USP Tailing
4	Rilpivirine HCl	5.3	2410202	8652	1.1

Table 25: Chromatogram Data for Oxidation Sample

Thermal degradation:

- ➢ Wavelength: 305 nm
- Mobile phase: Methanol: Water (85:15) pH 5.2
- Sample volume: 10µ1
- ► Flow rate: 0.8ml/min

Figure No. 18: Chromatogram of Thermal Sample

Table No. 26: Chromatogram Data for Thermal Sample

Sr. No.	Compound	RT (min)	Area (µV*sec)	USP Plate Count	USP Tailing
5	Rilpivirine HCl	5.105	4354691	8763	1.1

Photolytic Degradation:

- ➢ Wavelength: 305 nm
- Mobile phase: Methanol: Water (85:15) pH 5.2

50

- Sample volume: 10µl
- ➢ Flow rate: 0.8ml/min

Figure 19: Chromatogram of Photolytic Sample

 Table 27: Chromatogram Data for Photolytic Sample

Sr. No.	Compound	RT (min)	Area (µV*sec)	USP Plate Count	USP Tailing
6	Rilpivirine HCl	5.0	4995713	6037	1.1

CONCLUSION

Quality by Design approach has been successfully used for Development of RP-HPLC Method for estimation of Rilpivirine HCl. The developed method employed mobile phase Methanol: Water (85:15) (pH 5.2) pH and flow rate 0.8 ml/min, which was optimized with the help of design expert software. Linearity of the developed method was confirmed over concentration range of 20-100 µg/mL for Rilpivirine HCl with correlation coefficient of 0.999. The percentage RSD for precision and accuracy of the method was found to be less than 2%. Stability indicating studies (forced degradation) of Rilpivirine HCl was carried out at for 24 hours under various conditions like acidic, alkali, oxidation, thermal, photolytic and degradation of Rilpivirine HCl was found to be 7.75%, 2.23%, 11.10%, 15.66%, 3.25% respectively. Rilpivirine HCl was found to degrade under various conditions. Moreover, the lower solvent consumption along with the short analytical run time of 10 min leads to a cost effective and environmentally friendly chromatographic procedure. Thus, the proposed

methodology is rapid, selective, requires a simple sample preparation procedure, and represents a good procedure for Rilpivirine HCl.

ACKNOWLEDGMENT

The completion of this research is not only the fulfillment of our dreams but also the dreams of our family who have taken lots of pain for us in the completion of our higher studies. We take this privilege and pleasure to acknowledge the contributions of many individuals who have been inspirational and supportive throughout our work undertaken and endowed us with the most precious knowledge to see success in our endeavor. We sincerely thank to our esteemed guide and colleagues for helping us in project work and M. V. P Samaj's College of Pharmacy, Nashik for providing us a platform for research work.

REFERENCES

1. Patwardhan. D. M., Amrutkar S. S, Kotwal T. S and Wagh M. P, "Application of quality by design to different aspects of pharmaceutical technologies", International Journal of Pharmacy and Pharmaceutical Science, 2017;8(9):3649-3662.

2. Bhatt D. A and Rane S. I, "QbD approach to analytical RP-HPLC method development and its validation", International Journal of Pharmacy and Pharmaceutical Sciences, 2011; 3(1):179–187.

3. ICH Harmonized tripartite guidelines, "Pharmaceutical Development Q8 (R2)", Current Step 4 Version dated August 2009, P: 1-24.

4. Chilukuri. M, Hussain. K. R, Narayanreddy. P, Venkatramana. M, "Degradation pathway for Rilpivirine HCl by validated stability indicating UP-LC method", International Journal of Clinical Pharmacology and Toxicology,2012;1(1):1-8.

5. Thota S, Katta SR, Venisetty RK, "Estimation of Rilpivirine in bulk and pharmaceutical dosage form", Scholars Research Library,2014;6(1):146-151.

6. Ghosh. S, Bomma. S, Laxmiprasad. V, Vidyasagar. S, Banji. D, Roy. S, "Method development and validation of Rilpivirine in bulk and tablet dosage form by RP-HPLC method", Research Journal of Pharmacy and Technology, 2013;6(3):240-43.

7. Reddiah. V C, Ramadevi. P, Mukkanti. K., "Effective Estimation Of Rilpivirine By HPLC Method In Tablet Dosage Forms And Its In-vitro Dissolution Assessment", International Journal of Pharmacy and Pharmaceutical Science, 2012;4(3):595-599.

8. Dr. Yashoda. A, Rani. J, Venkataih. G, Shivakumar. A, "RP-HPLC method development and validation of Rilpivirine", International Journal of Pharmacy and Analytical Research, 2017;6(1);18-38.

	Danish Sayyad*		
00	Research Scholar,		
	Department of Quality Assurance, MVP Samaj's College of		
	Pharmacy, Nashik, Maharashtra, India - 422002		
	Dr. Ashok Pingle		
125	Head of Department of Pharmaceutical Chemistry,		
	MVP Samaj's College of Pharmacy, Nashik, Maharashtra,		
Dest.	India - 422002		
	Sarfaraz Shaikh		
00	Research Scholar,		
G	Department of Quality Assurance, MVP Samaj's College of		
	Pharmacy, Nashik, Maharashtra, India - 422002		
-	Shoeb Sayyed		
	Research Scholar,		
-A Maria	Department of Quality Assurance, MVP Samaj's College of		
()	Pharmacy, Nashik, Maharashtra, India - 422002		
	Amol Mhaske		
	Research Scholar,		
a a	Department of Quality Assurance, MVP Samaj's College of		
E	Pharmacy, Nashik, Maharashtra, India - 422002		
	Tohid Sayyad		
00	Research Scholar,		
	Department of Quality Assurance, MVP Samaj's College of		
	Pharmacy, Nashik, Maharashtra, India - 422002		

509