International Journal of Pharmacy & Pharmaceutical Research An official Publication of Human Journals

Human Journals **Review Article** March 2020 Vol.:17, Issue:4 © All rights are reserved by Prakash Yoganandam G et al.

An Abridged Review of Beneficial Potentials of a Brown Seaweed, Padina tetrastromatica, (Dictyotaceae)

Gowrishankar J, Prakash Yoganandam G*, Gopal V

Department of Pharmacognosy, College of Pharmacy Mother Theresa Post Graduate and Research Institute of Health Sciences, Gorimedu, Puducherry, India. 605006

Submission: 25 February 2020 Accepted: 2 March 2020 **Published:** 30 March 2020

www.ijppr.humanjournals.com

Keywords: Padina tetrastromatica, Antioxidant, cytotoxic activity

ABSTRACT

A good number of research articles were published so far for evaluating antioxidant, antibacterial, antimicrobial, antifungal, antidiabetics, antihyperlipidemic, acetylcholinesterase inhibitory activity and in-vitro cytotoxic activities in Padina tetrastromatica. Solvents are important for extracting potential compounds from natural sources. Frequency of solvents used for extraction is also portrayed and the results are discussed in this article. Methanol was the highest frequency as solvent for extraction purpose. DPPH method was found to be used mostly for the in vitro antioxidant activity evaluation purpose. From this demonstration, it was recognized that Padina tetrastromatica is an imperative target to find out novel therapeutic agents to combat life menacing illness.

INTRODUCTION

The marine environment offers an extremely rich resource for important compounds of novel and biologically active metabolites. It also represents a great challenge which requires inputs from various scientific areas to bring the marine chemical diversity up to its therapeutic potential. So far, many chemically unique compounds of marine origin, with different biological activities, have been isolated and a number of them are under investigation or being developed as new pharmaceuticals. In recent years, new sources of natural substances, such as marine macroalgae, have been explored. Marine algae or seaweeds are used in traditional medicine in many parts of the world. The production of inhibitory substances from seaweeds was noted as early as 1900. Since then numerous studies have been carried out to find novel compounds from marine algae of Phaeophyta (Figure No.1).

India has an extensive coastline along with several representations of marine algae. Few studies, however, have been done on the pharmacological potential of their bioactive secondary metabolites. Because these studies are particularly scarce for algae from the coast of Tamil Nadu, the present study focused on the *in-vitro* cytotoxic activity of marine algal species *Padina tetrastromatica*. This screening was intended to identify novel compound with cytotoxic activity for further isolation and identification of active compounds. This review was attempted to screen 16 research articles published during 1980 to till date on research works related to various activities and especially on cytotoxic activity in *Padina tetrastromatica*, towards their screening, isolation and characterization of potential compounds.

Figure No.1: Appearance of Padina tetrastromatica after collection

S. NO.	EXTRACTION METHOD	SOLVENT USED	REFERENCE
1	Maceration	Methanol	Rashmi, et al 2010. ^[2]
2	Maceration	Aqueous phosphate buffer	Johnsi Christobel, et al 2011. ^[3]
3	Soxhlet apparatus	Acetone, Chloroform, ethanol, ethyl acetate, Methanol	Pushparaj, et al 2013. ^[4]
4	Soxhlet apparatus	Chloroform, ethyl acetate, Methanol , Hexane	Sakthivel Jegan, et al 2018. ^[5]
5	Boiling	Distilled water	Rajeshkumar, et al 2016. ^[6]
6	Boiling	Distilled water	Kaithavelikkakatha, <i>et al</i> 2016. ^[7]
7	Successive extraction	Hexane, DCM, ethyl acetate, Methanol , acetone	Yin Yin Chia, <i>et al</i> 2015. ^[8]
8	Maceration	Chloroform, Methanol , Petroleum ether	John Peter Paul J, et al 2013. ^[9]
9	Soxhlet apparatus	Chloroform, Methanol , Peteroleum ether, water	Johnson M, et al 2014. ^[10]
10	Maceration	Methanol	Uma Maheshwari.M, <i>et al</i> 2017. ^[11]
11	Soxhlet apparatus	Chloroform, Methanol , Peteroleum ether, water	Divya Nair, <i>et al</i> 2019. ^[12]
12	Shaking water bath	Methanol	Kokilam, <i>et al</i> 2013. ^[13]
13	Soxhlet apparatus	Chloroform, Ethanol, Peteroleum ether	Subhash, et al 2016. ^[14]
14	Boiling	Distilled water	Manoj, et al 2013. ^[15]
15	Maceration	Methanol	Hajimehdipoor, et al 2017. ^[16]
16	Soxhlet apparatus	Ethanol	Radhika D, <i>et al</i> 2017. ^[17]

Table No.1: Solvent used for extraction purpose in Padina tetrastromatica

S. NO.	ISOLATED COMPOUND	CATEGORY	CHARACTERIZATION	REFERENCE
1.	Fucoidan, Alginic acid, Glucan	Polysaccharides	NMR analysis, IR fingerprinting	Paramita Karmakar, <i>et al</i> 2010. ^[18]
2.	Fucoidan	Sulphated polysaccharides	UV-spectral analysis, HPLC fingerprinting	Shri Devi, <i>et al</i> 2016. ^[19]
3.	Phlorotannins	Tannin	TLC,HPLC,LC-MS	Divya Nair, <i>et al</i> 2019. ^[12]
4.	Ascophyllan	Sulphated polysaccharides	IR spectral analysis	Sulaiman Mohsin, <i>et</i> <i>al</i> 2013. ^[20]
5.	Alginic acid	Polysaccharides	None	Kokilam G, <i>et al</i> 2013. ^[13]

TableNo.2:	Isolation	and	characterization	of	phytoconstituents	from	Padina
tetrastromatica							

Table No. 3: Instrumentation Analysis in Padina tetrastromatica

S. NO.	INSTRUMENTATION ANALYSIS	COMPOUNDS	REFERENCE
1	UV spectral Analysis, HPLC Finger Printing	Screened the Spectral Peaks	John Peter Paul J, et al 2013. ^[9]
2	HPLC Fingerprinting, UV Spectral Analysis	Confirmed the presence of phenolic compound based on spectral peaks	Johnson M, <i>et al</i> 2014. ^[10]
3	LC-MS Profiling	Camptothecin, Ripazepam, Strophanthidin, Dodecanamide, Dimethystilbosterol.	Yin Yin Chia, <i>et al</i> 2014. ^[8]
4	GC-MS Analysis	Coumarin, Flavone, 7- Hydroxyflavone, Olenic acid, Methyl oleate	Uma Maheshwari.M, <i>et</i> <i>al</i> 2017. ^[11]

S.NO	PHYTOCHEMICAL SCREENING	PHYTOCHEMICAL ESTIMATION	REFERENCE
1	NONE	Protein, Carbohydrates, Lipids, Phenolic content, Flavonoid	Kokilam G, <i>et al</i> 2013. ^[13]
2	NONE	Phenolic content, Phlorotanin	Divya Nair, <i>et al</i> 2019. ^[12]
3	NONE	Flavonoid content	Y.Sarojini, et al 2012. ^[21]
4	NONE	Phenolic content, Flavonoid content	Yin Yin Chia, <i>et al</i> 2014. ^[8]
5	Alkaloid, Flavonoid, Phenolic compound, Terpenoid, Steroid	NONE	Uma Maheshwari.M, <i>et al</i> 2017. ^[11]
6	Alkaloid, Flavonoid, Phenolic compound, Diterpenoid, Steroid, Cardiac glycoside, Coumarin	NONE	Sakthivel Jegan, <i>et al</i> 2018. ^[5]
7	Flavonoid, Protein, Aminoacid, Tannin, Phenolic compounds	NONE	M.Ponnanikajamideen, <i>et</i> <i>al</i> 2014. ^[22]
8	Steroids, Triterpenoids, Reducing sugar, Phenolic content, Saponin, Xanthoprotein, Tannin, Flavonoid, Glycoside, Anthroquinone	NONE	Johnson M, <i>et al</i> 2014. ^[10]

Table No.4: Phytochemical Screening and Estimation on Padina tetrastromatica

S. NO.	ANTIMICROBIAL ACTIVITY	PATHOGENS USED	METHOD	REFERENCE
1	Antibacterial Activity	Staphylococcus aureus, Streptococcus sp., Pesudomonas aeruginosa, E.coli, Micrococcus luteus, Proteus mirabilis, Vibrio alginolyticus, Vibrio fisheri, Vibrio harveyi and Klebsiella pneumoniae	Agar Disc Diffusion Method	Johnsi Christobel, <i>et</i> al 2011. ^[3]
2	Antimicrobial Activity	gram positive bacterial strains (<i>Staphylococcus</i> <i>aureus, Bacillus</i> <i>subtilis, Lactobacillus</i> <i>acidophilus</i>) and gram negative bacterial strains (<i>Pseudomonas</i> <i>aeruginosa,</i> <i>Escherichia coli,</i> <i>Proteus mirabilis</i>)	Agar Disc Diffusion Method	Pushparaj, <i>et al</i> 2013. ^[4]
3	Anti-MRSA ACTIVITY	Staphylococcus A aureus	Agar Disc Diffusion Method	Sakthivel Jegan, <i>et al</i> 2018. ^[5]
4	Antibacterial Activity	Salmonella typhi, Vibrio cholera, Shigella flexneri and Pseudomonas aeruginosa	Agar Disc Diffusion Method	Uma Maheshwari.M, <i>et al</i> 2017. ^[11]
5	Antiviral Assay	PFU Viral suggestion	Well plate method	Paramita Karmakar, <i>et al</i> 2010. ^[18]
6	Virucidal AssayViral suspensionAntibacterial ActivityE.coli, A.hydrophila		Test Tube method Kirby-Bauer disc diffusion method	<i>et al</i> 2010. ^[73] Kaithavelikkakatha, <i>et al</i> 2016. ^[7]
7	Antifungal Activity	Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Candida albicans, Fusarium sp	Agar Disc Diffusion Method	Rajeshkumar, <i>et al</i> 2016. ^[6]
8	Antibacterial Activity	Bacillus subtilis, Proteus sp, Streptococcus sp	Agar Disc Diffusion Method	Ponnanikajamideen, et al 2014. ^[22]

Table No. 5: Pharmacological Activity on Padina tetrastromatica

S.No	PHARMACOLOGICAL ACTIVITY	PARAMETER INVOLVED	REFERENCE
9	Anti-Inflammatory Activity	Gelatin zymography	Divya Nair, <i>et al</i> 2019. ^[12]
10	Anticoagulant Activity	APTT ASSAY Prothrombin Time Hepairinoid Activity	Manoj, <i>et al</i> 2013. ^[15]
11	Anticonvulsant Activity	Maximal electroshock-induced convulsion Pentylenetetrazole-induced convulsion	Subhash, <i>et al</i> 2016. ^[14]
12	Anti-Inflammatory Activity	Carrageenan induced paw edema	Sulaiman Mohsin, <i>et</i> <i>al</i> 2011& 2013. ^[20]
13	Antipyretic Activity	Yeast induced pyrexia	Radhika, <i>et al</i> 2017. ^[17]

Citation: Prakash Yoganandam G et al. Ijppr.Human, 2020; Vol. 17 (4): 711-722.

71

7

S. N O	CYTOTOXIC ACTIVITY	METHOD	CELL L	INE USED IN THE STUDY	REFERENCE
1	In Vitro Cytotoxic Assay	Brine Shrimp Lethality Test	NONE		Rashmi, <i>et al</i> 2010. ^[2]
2	Invitro Cytotoxic Assay	Brine Shrimp Lethality Test		NONE	Aseer Manilal, et al 2016. ^[23]
		MTT ASSAY	184B5	Human breast cell line	· Yin Yin Chia,
3	3 Cytotoxic Activity	METHOD	MCF-7	Human breast adenocarcinoma cell line	<i>et al</i> 2015. ^[8]
			A-549	Non-small cell lung carcinoma	
4	Cytotoxicity Evaluation	MTT ASSAY METHOD	HT-29	Human colorectal adenocarcinoma	
4	Assay		HepG-2	human hepatocellular carcinoma	Hajimehdipoor , et al 2017. ^[16]
			MCF-7	Human breast adenocarcinoma cell line	
5	Cytotoxic Assay	MTT ASSAY METHOD	MCF-7	Human breast adenocarcinoma cell line	Clara Gnana Selvi, <i>et al</i> 2016. ^[24]

Table No.6: In-vitro cytotoxic Activity on Padina tetrastromatica

S.NO	INVITRO ANTIOXIDANT ACTIVITY	ABSORBANCE nm	REFERENCE	
	DPPH ASSAY	517		
1	REDUCING POWER ASSAY	655	- Rashmi.C, et al 2010.[2]	
	FERROUS ION CHEALATING ACTIVITY	562		
	DPPH ASSAY	517		
	SUPEROXIDE ANION RADICAL	560		
	NITRIC OXIDE SCAVENGING	540		
2	HYDROXYL RADICAL SCAVENGING	550	- Yin Yin Chia, et al 2014.[8]	
	SOD ASSAY	560		
	CATALASE ASSAY 340			
	GLUTATHIONE REDUCTASE	340		
	DPPH ASSAY	517		
3	ABTS ASSAY	730	Uma Mahasharari M	
3	PHOSPHOMOLYDENUM ASSAY	695	<u>Maheshwari.M</u> , <i>et al</i> 2017. ^[11]	
	FERRIC ION REDUCING POWER ASSAY	700		
	DPPH ASSAY	517		
4	SUPEROXIDE RADICAL	560	Sulaiman	
4	HYDROXYL RADICAL SCAVENGING	520	Mohsin, <i>et al</i> 2013. ^[20]	
	REDUCING POWER ASSAY	700		
5	TOTAL ANTIOXIDANT ACTIVITY	695	Kokilam G, et	
5	DPPH ASSAY	517	al 2013. ^[13]	
6	DPPH ASSAY	517	Divya Nair, et al 2019. ^[12]	

Table No.7: In-vitro antioxidant Activity on Padina tetrastromatica

CONCLUSION

The present study outlines that *Padina tetrastromatica* as natural brown algae with potential constituents that have been used in combating the threatening disease. Since numerous phytochemical screening has been done in this species in which Methanol is considered as most commonly used solvent for extraction purpose. The above mentioned seaweed has showed significant pharmacological activity in recent studies. However, the studies clearly

specify that compound responsible each activity should be undertaken, meanwhile most common isolation done in the above species is Polysaccharide but instrumental analysis reveals the presence of secondary metabolites like Flavonoid, Camptothecin, Coumarin but isolation of such metabolites yet to be screened in future. So that marine derived secondary metabolite from *Padina tetrastromatica* can be expected to combat with life threatening disease like Cancer, Diabetes.

ACKNOWLEDGEMENT

The authors are very much thankful to the Dean and faculty of Mother Theresa P.G & R.I of Health Sciences for their constant encouragement and support.

CONFLICT OF INTEREST: Nil

SOURCE OF FUNDING: Nil.

REFERENCES

1. Narsinh L Thakur, Archana N Thakur, and Werner E G Nuller; Marine Natural Product in Drug Discovery. Natural Product Radiance; 2005; vol.4 (6); 471-476.

2. Rashmi C. Vinayak, Sabu. A.S, and Anil Chatterji; Bio-Prospecting of a Few Brown Seaweed for their Cytotoxic Activities. Evidence-Based Complementary and Alternative Medicine; 2010; vol.2011; 1-9.

3. Johnsi Christobel. G, Lipton.A.P, Aishwarya. M.S, Sarika. A.R, and Udayakumar. A; Antibacterial activity of aqueous extract from selected macroalgae of southwest coast of India. Seaweed research and Utilization; 2011; vol.33 (1&2); 67-75.

4. Pushparaj A, Rajan D, Balamurugan SJ, Murugesan R, Kannan M, and Raubbin RS; An Antibacterial activity of the brown seaweed *Padina tetrastromatica* against human pathogenic bacteria. International journal of applied biology and pharmaceutical technology; 2013; vol.5; 135-138.

5. Sakthivel Jegan, Gnanaprakasan Adaikala raj, Manivachagam Chandrasekaran and Venugopalan, Venkatesalu; Anti-MRSA Activity of *Padina tetrastromatica* and *Padina gymnospora* from Gulf of Mannar Biosphere. World Scientific News; 2018; vol.115; 15-26.

6. Rajeshkumar S, Malarkodi C, Venkat Kumar S; Synthesis and characterization of silver nanoparticles from marine brown seaweed and its Antifungal efficiency against clinical fungal pathogens; 2016; vol.10; 190-193.

7. Kaithavelikkakath Francis Princy, Sarasan Manomi, Rosamma Philip, and Anu Gopinath; Antibacterial and catalytic efficacy of biosynthesized silver nanoparticles using marine seaweed *Padina tetrastromatica*. Nano Biomed Eng; 2016; vol.8; 16-23.

8. Yin Yin Chia, Kanthimathi M S, Kong Soo Khoo, Jayakumar Rajarajeshwaran, Hwee Ming Cheng, and Wai Sum Yap; Antioxidant and Cytotoxic Activity of three species of tropical seaweeds. BMC Complementary & Alternative Medicine; 2015; vol.15; 339

9. John Peter Paul, Shri Devi S.D.K; Phytochemical Screening of *Padina tetrastromatica* Hauck. American Journal of Pharmatech Research; 2013; vol.3 (5); 214-221.

10. Johnson M, Nellaiammal alias Suki R, Janakiraman N; UV-VIS and HPLC studies on *Padina gymnospora* and *Padina tetrastromatica* Hauck. ActaBiomedicaScientia; 2014; vol.1 (3); 122-128.

11. Uma Maheshwari. M, Reena. A, and Sivaraj. C; GC-MS analysis, Antioxidant and Antibacterial activity of the Brown algae, *Padina tetrastromatica*. International Journal of Pharmaceutical Science and Research; 2017; vol.8; 4014-4020.

12. Divya Nair, Muralidharan Vanuopadath, Akshaya Balasubramanian, Akshay Iyer, Shankar Ganesh, Abishek Nair Anil, Vijesh Vikraman, Prasanth Pillai, Chinchu Bose, Bipin Gopalakrishna Pai, and Sudarslal Sadasivan Nair; Phlorotannins from *Padina tetrastromatica*: structural characterization and functional studies. Journal of Applied Phycology;2019; Doi.org/10.1007/s10811-019-0179-y

13. Kokilam G, Vasuki S, Sajitha N; Biochemical composition, alginic acid yield and antioxidant activity of brown seaweed from Mandapam region, Gulf of Mannar. Journal of Applied Pharmaceutical Science; 2013; vol.3 (11); 99-104.

14. Subash R. Yende. Uday N. Harle, Abhay M. Itttadwar; Insignificant Anticonvulsant activity of *Padina tetrastromatica* (Brown Macroalgae) in Mice. Journal of Pharmaceutical Negative Results; 2016; vol. 7; 33-36.

15. Manoj Saravana Guru M, Mahesh Kumar P.S., Vasanthi M. and Anant Achary; Anticoagulant property of sulphated polysaccharides extracted from brown algae collected from Mandapam Island, India. African Journal of Biotechnology; 2013; vol.12 (16); 1937-1945.

16. H. Hajimehdipoor, B. Gharanjik, H. Soleimani, Z. Mousavi, and M. Hamzeloo-Moghadam; Two algae from Oman Sea: The *Invitro* biological effects. International Journal of Pharmaceutical Science and Research; 2017; vol.8; 4286-4290.

17. Radhika. D and Priya. R; Antipyretic activity of *Acanthophora spicifera* and *Padina tetrastromatica* in crude and Silver Nanoparticles containing extracts. International Journal of Pharma and Chemical Research; 2017; vol.3; 232-241.

18. Parmita Karmakar, Carlos Alberto Pujol, Elsa Beatriz Damonte, Tuhin Ghosh, Bimalendu Ray; Polysaccharides from *Padina tetrastromatica*: Structural features, chemical modification and antiviral activity. Carbohydrate polymer; 2010; vol.80; 513-520.

19. Shri Devi S.D.K; Extraction, Estimation and Characterization of Fucoidan from *Padina tetrastromatica* Hauck in Manapad Coast, Tamil Nadu, India. American Journal of Biological and Pharmaceutical Research; 2016; vol.3 (1); 42-45.

20. Sulaiman Mohsin, Muraleedhara kurup.G, and Mahadevan. R; Effect of Ascophyllan from Brown Algae *Padina tetrastromatica* on Inflammation and Oxidative Stress in Carrageenan-Induced Rats. Inflammation; 2013; vol.36; 1268-1278.

21. Sarojini. Y, Lakshminarayana. K and Seshagiri Rao. P; Variation in distribution of flavonoid in some seaweed of Visakhapatnam coast of India. Scholars Research Library; 2012; vol.4; 1481-1484.

22. Ponnanikajamideen. M, Suneetha. V. and Rajeshkumar S; Antidiabetic, antihyperlipidemic and antioxidant activity of marine brown seaweed *Padina tetrastromatica*. Journal of Chemical and Pharmaceutical Science; 2014; vol.10; 379-384.

23. Aseer Manilal, Mohammedaman mama, Tigist Gezmu, Behailu merdekios, Gemechu Ameya, Shiju Easo John, Akbar Idhayadhulla; An In-vitro Antibacterial and Cytotoxic potentials of Bioactive Metabolites Extracted from *Padina tetrastromatica*. Translational Biomedicine; 2016; vol.7; 1-2.

24. B Clara Gnana Selvi, J Madhavan and Amutha Santhanam. 2016. Cytotoxic effect of Silver Nanoparticles synthesized from *Padina tetrastromatica* on Breast cancer cell line. Advances in Natural science: Nanoscience and Nanotechnology. vol.7: 1-8.

DR.G.PRAKASH YOGANANDAM Author Affiliation : Department of Pharmacognosy Author Address/Institute Address: College of Pharmacy MOTHER THERESA POST GRADUATE AND RESEARCH INSTITUTE OF HEALTH SCIENCES (Govt. of Puducherry Institute), Indira Nagar, Gorimedu, Puducherry, Puducherry-605006.
GOWRISHANKAR J RESEARCH SCHOLAR MOTHER THERESA POST GRADUATE AND RESEARCH INSTITUTE OF HEALTH SCIENCES (Govt. of Puducherry Institute), Indira Nagar, Gorimedu, Puducherry, Puducherry-605006.
Prof. Dr. V. Gopal M. Pharm., M.B.A., PGDCA., Ph.D., FICS., MISTE., Principal and Registrar Academic, Mother Theresa Post graduate and Research Institute of Health Sciences, (A Govt. of Puducherry Institution), Puducherry-6.

Citation: Prakash Yoganandam G et al. Ijppr.Human, 2020; Vol. 17 (4): 711-722.