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ABSTRACT  

Purpose of Review: The major cause of mortality in India is 
cardiovascular diseases (CVDs), with 52% of the population 
suffering from CVDs before the age of 70. The largest 
proportion of CVDs is due to myocardial infarction (MI). Some 
patients still experience heart failure after myocardial 
infarction, despite advancements in medical and surgical 
therapy. Primary percutaneous coronary intervention is now 
the recommended reperfusion technique for patients with 
acute ST-segment-elevation myocardial infarction, aimed at 
restoring artery patency linked to epicardial infarction. 
Considerable improvements in the understanding and 
treatment of coronary artery disease have been seen in recent 
years. This paper will aim to concentrate on some of these 
areas of greatest interest. Recent Findings: In both pre-clinical 
and clinical trials, positron emission tomography (PET) has 
emerged as a widely used modality for imaging myocardial 
inflammation. Recent advancements in PET instrumentation, 
such as total body imaging, will allow high sensitivity to study 
multi-organ dysfunction simultaneously (e.g., heart and brain 
inflammation after a heart attack). Hybrid PET/MR imaging is 
an emerging modality of imaging. The purpose of inflammation 
imaging is to monitor the mechanism non-invasively and 
quantitatively to identify and monitor the best therapeutic 
strategies for intervention. This study provides an overview of 
the application of hybrid PET/MRI to myocardial infarction 
inflammation imaging. Several clinical and preclinical studies 
have indicated that another significant independent indicator 
of adverse left ventricular remodeling is the existence and 
magnitude of MVO, and recent research supports the 
suggestion that MVO might be more predictive of major 
adverse cardiovascular events than the size of the infarction 
itself. Summary: This review aims to summarize and present 
scientific evidence on developments in MI research and 
pharmacological/non-pharmacological MI care. With the 
assistance of PubMed, Google Scholar, Springer, and other 
online tools, data was gathered.  
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LIST OF ABBREVIATIONS 

MI myocardial infarction 

NSTEMI non-ST segment elevation myocardial infarction 

STEMI ST-segment elevation myocardial infarction 

CT Computerized Tomography 

MRI magnetic resonance imaging 

CMRI Cardiac magnetic resonance imaging 

PET Positron emission tomography 

BOLD Blood Oxygen Level-Dependent 

CEST Chemical Exchange Saturation Transfer  

FDG Fluorodeoxyglucose 

MVO Microvascular obstruction  

PCI percutaneous coronary intervention 

HF Heart failure 

A myocardial infarction (MI) that is often referred to as "heart attack" happens when blood 

flow to the heart is abruptly interrupted and the heart muscle is killed. This disorder also 

results from the occlusion of one or more coronary arteries that supply the heart with an 

atherosclerotic plaque, causing an insufficient supply of oxygen and nutrients and causing 

infarction or death of the heart muscle tissue called myocardium.1 While the usual symptoms 

of MI include crushing or pressure-like chest pain associated with nausea, diaphoresis 

(sweating), palpitation, dyspnea (shortness of breath), and anxiety. Symptoms may be 

atypical or even absent i.e about 64% of people with MI have no obvious symptom, which is 

called silent MI.2 It usually occurs in patients with known ‘‘risk factors,’’ that is, 

hypertension, cigarette smoking, hyperlipidemia, diabetes, obesity, sedentary lifestyle, history 

of heart disease or other vascular diseases such as stroke, family history of heart disease, and 

abuse of certain drugs such as cocaine, amphetamines, etc. A patch of pallor in the cardiac 

muscle is the earliest emergence of the infarct. Later on, it is yellowish and dry, and the edges 

are hemorrhagic. There is a certain potential for the infarcted region to spread, leading to a 

new emergence of symptoms.3 

MI is distinguished between non-ST segment elevation myocardial infarction (NSTEMI) and 

ST-segment elevation myocardial infarction, depending on the electrocardiogram trace 

(STEMI).4 The consequence of transmural myocardial ischemia involving the complete 
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thickness of the myocardium is STEMI, while NSTEMI does not spread across the entire 

myocardial wall. Under the definition of the acute coronary syndrome, STEMI, NSTEMI, 

and dysfunctional angina pectoris are established. Concept of the acute coronary syndrome.5 

Recent advances in MI 

Conventional CT (Computerized Tomography) angiography has an advantage in evaluating 

coronary stenosis with 95-99% sensitivity and 97-99% accuracy, compared with intrusive 

coronary angiography.6 Myocardial research, however, is constrained by artifacts of motion 

and beam-hardening.7 Dual-energy CT is opening up a new age for cardiac imaging with the 

development of the CT technique in which attenuation data from various energies are used to 

classify material properties. For the study of myocardial activity, CT perfusion imaging, late 

iodine enhancement CT imaging, and CT strain imaging are now used. In addition to 

correcting beam-hardening artifacts to improve image quality, the dual-energy CT technique 

also generates iodine maps to increase precision in MI evaluation. The iodine map represents 

the distribution of iodine that is associated with myocardial perfusion and blood flow in the 

myocardium.8 CT perfusion imaging is used for myocardial injury evaluation of fixed and 

reversible perfusion defects. From myocardial perfusion imaging, qualitative and quantitative 

analyses can be obtained. As the reference standard for testing myocardial fibrosis or 

scarring, CMRI (Cardiac magnetic resonance imaging) is used. In the meantime, CMRI 

acquired myocardial extracellular volume fraction is now considered a valid parameter for the 

evaluation of diffuse myocardial fibrosis.9 To test regional cardiac function using cardiac CT, 

myocardial strain imaging has emerged as a quantitative method.10 Conventional myocardial 

strain imaging enables the degree of two-dimensional (2D) strain reduction to be defined by 

MI, which primarily tests strain in three orthogonal directions of myocardial motion: 

longitudinal strain, circumferential strain, and radial strain.11 Recently, for the identification 

of regional cardiac dysfunction with MI, the three-dimensional maximum principal strain 

acquired from cardiac CT can also be used.12 Technological developments in CT imaging 

have expanded the scope for MI evaluation more than traditional CT imaging, which is useful 

for the detection of diseases and clinical management.13 

1) PET Imaging 

Positron emission tomography (PET) can quantify and track the molecular expression of 

immune cells quantitatively, making it one of the most promising imaging modalities to 

examine the immune system's function in myocardial recovery or post-myocardial infarction 
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remodeling. A typical technique for PET is to use a radiotracer, which is a small "tagged" 

molecule with a positron emitter that is either connected to, absorbed, or enzymatically 

influenced by the body's molecular targets.14 Alternatively, biomolecules, generally referred 

to as immuno-PET imaging, such as radiolabeled monoclonal antibodies, engineered 

antibody fragments, or synthetic peptides designed to bind to molecular targets, can be 

used.15 

2) Nanoparticles 

Due to their unique advantages, including amplification of the target signal, 16 a large surface 

area that enables target binding, and the ability to deliver therapeutic agents, radiolabeled 

nanoparticles have recently emerged as an effective strategy for molecular imaging.17 

Macroflor demonstrated a clear association with macrophages found by histology in 

atherosclerotic plaques of mice and rabbits18 as well as in infarcted myocardium of mice.19 

a) Conventional PET scanner b) total-body PET scanner. 

With the recent construction of the world's first PET/CT total-body scanner, called 

EXPLORER, we can now encompass the entire human body within the PET scanner's field 

of view (FOV) and simultaneously enable imagery of all body tissues and organs.20 This is in 

contrast to whole-body PET scanners, which, as a collection of image sets acquired at distinct 

bed locations, cover much of the body. Total-body PET imaging may have important 

implications for the study of systemic diseases (e.g., cancer, inflammation, vascular disease, 

and infectious disease), the monitoring of cellular and nanoparticle-based therapies, the 

assessment of pharmacokinetics and toxicology of medications, the analysis of normal tissue 

physiology and metabolism, and the study of multi-organ diseases or disorders requiring the 

involvement of one (e.g., the heart-brain axis after myocardial infarction or stroke).21 

Findings from preclinical and clinical cohort studies indicate that after myocardial infarction, 

the immune system plays a vital role in left ventricular recovery. Molecular imaging is 

important for the non-invasive visualization of immune cells recruited to the damaged 

cardiomyocytes due to restricted access to myocardial tissue after myocardial infarction in 

patients so that we can better understand the specific role of immune subsets in post-injury 

myocardial recovery and improve immune modulation agents.22 
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3) MRI in myocardial inflammation post-myocardial infarction 

Due to its high spatial resolution, excellent soft-tissue contrast, and ability to minimize and/or 

quantify cardiac and respiratory motion, the MRI is an attractive modality to use for Post-

MI.23 

a) Functional Imaging 

Owing to the thinness of the atrial wall, approaching the resolution of MRI, the imaging of 

smaller cardiac structures such as those associated with the atria has become more difficult. 

Developments such as phase-contrast flow imaging, in which the velocity of moving 

magnetic moments (flow) is proportional to the phase shift24 and its successor, 4D Flow, have 

helped to estimate the effects of valve defects on the ventricular regurgitant fraction. 

Attempts are under development to apply 4D Flow to explore the symptoms of atrial 

fibrillation.25 

b) ‘‘Scar’’ Imaging  

The distribution volume of gadolinium chelates such as Gd-DTPA has been extensively 

shown to conform to the extracellular space in the myocardium. This is measured as the ratio 

of the myocardial Gd-chelate concentration divided by the blood concentration, which is also 

referred to as the coefficient of partition and designated as k. If the hematocrit is known, i.e. 

Vd = k 9, the volume of distribution can be determined from k (1 - Hct). K in post-MI 

myocardial tissue has been shown to increase from approximately 0.45 to 0.9 mLg-140-42 in 

both humans and dogs.26 

c) Myocardial Blood Flow  

Myocardial blood pressure can be assessed after a transmural resolution bolus injection of 

gadolinium chelate.27,28 Full heart coverage may not always be necessary, however, and two 

bolus injections are frequently used to account for signal saturation,29 raising the amount of 

Gd-chelate required by developing methods to solve these problems.30,31,32 The increased 

difficulty of the use of Gdchelates, which have a much lower extraction fraction compared to 

PET methods such as those using 13NAmmonia or 15O-water56-58, has been seen in 

contrast to determinations using PET.33 It is important to remember here that while Gd-

chelates are extracellular, 13N-Ammonia enters and is trapped in living cells.34 

 



www.ijppr.humanjournals.com 

Citation: Harsha Hosur et al. Ijppr.Human, 2021; Vol. 21 (1): 175-189. 180 

d) BOLD MRI Contrast 

For the noninvasive analysis of the brain, Blood Oxygen Level-Dependent (BOLD) contrast 

in MRI has been widely used. Venous blood contains higher amounts of oxyhemoglobin with 

a related reduction of deoxyhemoglobin content due to the reduced extraction fraction of 

oxygen as blood volume increases.35 In comparison, dobutamine administration resulted in an 

improvement in coronary blood flow but no substantial change in T2* compatible with a lack 

of change in myocardial venous deoxyhemoglobin. New MRI approaches for cardiac BOLD 

calculation have recently shown significant promise to suggest a capacity for myocardial 

ischemia assessment comparable to SPECT and PET methodologies.36 

e) Chemical Exchange Saturation Transfer (CEST) 

The transition of chemical exchange saturation (CEST) depends on the preferential saturation 

and exchange of protons of interest to free protons imaged with MRI37,38,39 from metabolites. 

Changes in protein concentration40, glutamate41, creatine42, glycosaminoglycan, and most 

importantly pH (acidoCEST)43,44 and D-glucose (glucoCEST) 45,46,47 have been identified 

utilizing CEST. The latest promising findings indicate its efficacy in post-MI measuring 

myocardial creatine kinase 48,49 and hyaluronan synthesis.50 

f) PET imaging post-myocardial infarction 

While a large number of PET probes for cardiac analysis have been created, to date only a 

few have been used in clinical practice for use in post-MI patients51. Post-MI PET imaging is 

more widely conducted with 18F-FDG, even if it is important to inhibit stable myocyte 

glucose uptake concurrently with flow tracers to test ischemia. It has been shown in vitro that 

the absorption of 18F-FDG is higher in M1 macrophages than in M2 macrophages. When 

isolated from the human THP-1 monocyte cell line52, the absorption of M1 macrophage is 

double that of M2. In comparison, the absorption of 18F-FDG in M1 macrophages is 10 

times greater than M253 when primary monocytes from human blood are used. As the 

absorption of 18F-FDG by neutrophils and monocytes can be close to that of M1 

macrophages, this is further blurred. 

g) Hybrid PET/MR in Cardiology 

Data collection has been the main disadvantage of standalone PET (i.e. concurrent PET/CT) 

as the heart travels through the combined cardiac and respiratory processes. Which is in 
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contrast to cardiac MRI, where breath-hold or respiratory gating54 can be paired with ECG 

synchronization of the cardiac cycle. However, PET respiratory gating results in a loss of 50 

percent of the data, and splitting the cardiac period into eight phases results in a cumulative 

loss for each portion step of 15/16th of the data obtained. Methods for capturing cardiac MR 

images taken at various points in the respiratory cycle have been developed55,56 but to date, 

they have not been used successfully to reduce/eliminate the impact of motion on the PET 

data without losing such MRI capabilities57-60. The respiratory and cardiac motion of the heart 

may be monitored by MRI (e.g., 3D navigator echoes and motion-sensitive MRI acquisitions) 

and PET reaction lines may be transferred to a fixed cardiac position (e.g., practical residual 

power end-diastole).61-63 

h) Hybrid PET/MRI as a Convergent Technology 

There is a need for near-perfect registration between PET and MRI as well as other 

considerations to attain convergence. For all PET radioisotopes, a significant weakness of 

PET is the one typical signal (511 keV extinction radiation). During some data processing, 

this restricts PET to a single radiopharmaceutical, while there is the potential to capture a 

spectrum of image comparisons in MRI dependent on various pulse sequences and proton 

encounters with static and changing magnetic fields. For instance, in a single imaging 

session, a post-MI analysis that involves both blood flow (e.g., 13N ammonia) and 

inflammation (e.g., 18F-FDG) by PET is difficult to achieve. One option is to use contrast-

enhanced MRI164 or BOLD MRI65 to conduct myocardial blood flow measurements, which 

during cardiac exams may improve acquisition time and dosage. In diseases such as heart 

sarcoidosis, this would be particularly useful where it would be helpful to study blood flow 

and inflammation.66,67 

i) Future Opportunities with Hybrid Cardiac PET/MRI 

The use of PET radiopharmaceuticals was focused on poor (but not zero) unspecific binding 

for anatomical signal localization before hybrid imaging in PET (i.e., PET/CT). The trend of 

setting up PET probes without non-specific binding can now be further engaged with the 

automatic registration of the MRI image to the PET distribution without the need for an extra 

radiation dose from CT. This allows, for example, to track PET-labelled cells. If hybrid 

PET/MRI correctly documented the PET and MRI images, as seen in the section 'Injecting 

Labeled Inflammatory Cells,' the tracking of 89Zr-labeled cells could be feasible, while this 

could not be done consistently with PET/CT or sequential PET/MR. 89Zr appeals to 
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longitudinal imaging for its 3.3-day half-life, since it can be tracked within the body for as 

long as 30 days.68 

4) Microvascular obstruction (MVO) 

-CMR-defined MVO is now a well-established adverse prognostic marker that appears in half 

of active primary percutaneous coronary intervention (PCI) patients with STEMI.69,70 

Attempts to further increase outcomes in these patients to date have been targeted at 

minimizing infarct size with modest results. There is an unmet need for future trials to 

determine whether it will potentially be successful to treat both infarct size and MVO using a 

mixture of therapies to further enhance performance in this community of patients. 

Pharmacological Strategies to Reduce MVO and Limit Infarct Size 

a) β - blockers - tests have shown METOCARD-CNIC: IV metoprolol up to 15 mg before 

reperfusion and IV metoprolol up to 15 mg before reperfusion. EARLY BAMI: 5 mg IV 

metoprolol 2 boluses before reperfusion in STEMI indicates a reduction in infarct size (CMR 

at 5-7 d). The possible effect of O2 intake on cardiomyocytes has been reduced. The potential 

effect of neutrophil platelet coaggregation inhibition on microcirculation is shown.71-73 

EARLY BAMI: IV metoprolol 2 5 mg bolus before STEMI reperfusion reveals the size of 

infarction (CMR at 30 d). 74 

b) Adenosine - Tests found AMISTAD-II: infusion of adenosine 50 or 70 μg/kg·min within 

3-4 hours began either after initiation of fibrinolysis or before coronary intervention within 

15 minutes. Composite of chronic HF, rehospitalization for HF and death at 6mo; infarct size 

(technetium-99 m sestamibi) as endpoints are seen in STEMI. No variations in health 

outcomes; infarct duration. Afterload, ATP degradation, Cellular Ca2+ influx, Oxidative 

stress indicates the possible effect on cardiomyocytes. The potential effect of coronary 

microvascular vasodilation on microcirculation, adherence to neutrophils and neutrophil-

mediated cellular damage, platelet aggregation, oxidative stress.75,76 

c) Statins - Tests have shown that SECURE-PCI: atorvastatin is 80 mg before and 24 h after 

the scheduled PCI, STEMI Scale of infarct (CKMB), and LVEF. Microvascular dilation, 

endothelial activity, platelet activation, inflammation, immune response. Possible effect on 

microcirculation.77 
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d) Atrial natriuretic peptide - Tests have shown that J-WIND: intravenous carperitide 72 h 

infusion began before PPCI. STEMI, as an end-stage, MVO by CMR on days 2 to 7. The 

outcome was the scale of the infarction, the LVEF. End-diastolic strain, coronary collateral 

blood flow, mitochondrial potassium ATP channel activation indicates possible influence on 

cardiomyocytes. Potential effect on microcirculation demonstrated by an intracoronary clot 

and endothelial cytotoxicity caused by neutrophils.78 

e) Intracoronary fibrinolytic therapy - Experiments shown T-TIME: Intracoronary 

alteplase 10 mg or 20 mg during PPCI (after reperfusion of the infarct-related coronary artery 

and before stent implant). To STEMI, MVO by CMR as an endpoint on days 2 to 7. 

Intracoronary clot. Possible effect on microcirculation shown.79 

5) Recent updates on myocardial infarction diagnosis 

In addition to aspirin, frequent use of antiplatelet agents such as clopidogrel, prasugrel, or 

ticagrel or decreases morbidity and mortality in patients. The key care of patients with acute 

ST-segment elevation MI is PCI promptly. Drug-eluting coronary stents with primary 

coronary involvement are stable and beneficial. Direct thrombin inhibitor treatment during 

PCI is non-inferior to unfractionated heparin and glycoprotein IIb/IIIa receptor antagonists 

and is consistent with substantial bleeding reduction. Intracoronary use of an antagonist of 

glycoprotein IIb/IIIa can decrease the size of the infarct. Further cardioprotection may be 

provided by pre-and post-conditioning strategies.80 

In patients with acute MI, thrombolytic medications have decreased mortality, but new 

therapies have limited effectiveness in obtaining and sustaining immediate vessel patency in 

the longer term. Complete perfusion is restored in only 54 percent of patients by the strongest 

existing thrombolytic therapy, rapid tissue plasminogen activator, although streptokinase 

does this in only 30 percent. In major clinical trials, thrombolytic drugs such as recombinant 

plasminogen activator and prourokinase are being developed but must be tested. The prospect 

of antithrombin drugs newly established to decrease arterial re-occlusion is unclear. New 

medications blocking platelet receptors appear to have the greatest ability to increase 

immediate and long-term vessel patency rates. Compared to thrombolytic, the greater 

advantages of primary angioplasty have not been definitively established.81 In acute coronary 

syndrome, thrombus formation happens under conditions of elevated shear stress and is 

mainly driven by platelet aggregation. During intracoronary thrombus formation, this 

dominance of platelet aggregation illustrates the drastic impact antiplatelet therapies have on 
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clinical results. Aspirin was the first antiplatelet therapy that induced a halving in event rates 

in patients with acute coronary syndrome: such a large impact size has rarely been exceeded 

in other realms of cardiology.82 Given the remarkable success of aspirin, it is therefore 

unsurprising that adjunctive antiplatelet therapies have been explored to improve on these 

advantages, especially as there are several platelet activation pathways outside the pathway of 

cyclooxygenase. There is, however, a compromise between minimizing the occurrence of 

potential coronary problems and causing harm due to an elevated risk of bleeding, as platelets 

are necessary for primary hemostasis.83 The P2Y12 (adenosine phosphate) receptor 

antagonists are a class of drugs that have achieved general popularity because, at the cost of 

small reductions in bleeding, they tend to offer an additional thrombotic defense. Their use is 

mainly related to declines in chronic MI and, in a few studies, decreases in coronary attacks 

and mortality. There are other anti-platelet therapies available,84 but they have variable net 

clinical value, and only dual antiplatelet therapy with aspirin and P2Y12 receptor antagonism 

will be included for this review.85,86 
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