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ABSTRACT  

Injectable hydrogels are mainly used as carriers of 

therapeutic agents. They are prepared by chemical or 

physical gelation method. This system offers 

sustained release of drugs from several days to a months. 

Thus, it reduces the need of frequent dosing to the patient 

and increases patient compliance. Injectable hydrogels 

shows shear thinning property when injected into the body. 

Hydrogels with injectability under mild conditions are 

preferred within the field of biomedicine, especially for drug 

delivery, tissue engineering, etc. In the present article, we 

have covered various aspects regarding injectable hydrogel 

such as formulation development, types, mechanisms and 

applications. 
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1. INTRODUCTION: 

Injectable hydrogels are mainly used as carriers of therapeutic agents. Hydrogels are 

promising for a variety of medical applications because of their high water content and 

mechanical similarity with natural tissues [1]. When injectable hydrogels are made, they 

reduce the invasiveness of application, which in turn reduces surgical and recovery costs [2]. 

They are three-dimensional networks of cross-linked hydrophilic polymers. They possess 

several advantages over conventional sustained released systems [3]. 

In-situ forming injectable hydrogels can overcome the problems that occur with conventional 

systems [4]. Injectable hydrogel is one of the types in situ gelling systems which needs better 

control of gelation kinetics. Hydrogels with injectability under mild conditions are preferred 

in the field of biomedicine, especially for drug delivery and tissue engineering. Because of 

the favorable carrier property in three-dimension, it has biocompatibility, low invasiveness, 

and adaptable shape for administration. Despite the benefits, injectable hydrogels may also 

face some challenges to satisfy the varied clinical requirements. Biomaterials encompass an 

outsized and diverse array of materials that range from metallic orthopedic implants to 

polymeric constructs aimed towards replacing, restoring, or regenerating lost tissue structure 

and function. An ever-growing class of biomaterials is polymeric hydrogels, classically 

defined as three-dimensional (3D), water-swollen polymer networks formed as a result of 

physical or chemical cross-linking [5]. With plenty of water, hydrogels can have good 

biocompatibility, desirable biodegradability, and various kinds of payloads, e.g. drugs, 

peptides, proteins, and genes, can be loaded into a hydrogel matrix, by absorption and/or 

encapsulation method. Because of their high water content and mechanical resemblance to 

natural tissues, hydrogels show promising biocompatibility and potential for 

medical/biological applications. Injectable hydrogel formulations are especially attractive due 

to their minimally invasive delivery procedure, providing reduced healing time, reduced 

scarring, decreased risk of infection, and simple delivery compared with surgically implanted 

materials[6]. 

Besides, an injectable gel is a kind of in situ forming hydrogel, so that it simplifies the 

incorporation ofhence is recognized as a preferred delivery vehicle. However, except for the 

in situ gelling characteristics, the hydrogel is prepared in such a way that it will transport the 

sol or the pregel to a targeting site for gelation through an injection device[7]. Injectable 

hydrogel formulations are especially attractive due to their minimally invasive delivery 
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procedure, providing reduced healing time, reduced scarring, decreased risk of infection, and 

ease of delivery compared with surgically implanted materials[8,9]. Hydrogels also can be 

rendered injectable by preforming the gels into microparticles or nanoparticles. However, 

particulate systems (e.g., micelles, liposomes, polymer-drug conjugates, microparticles, and 

nanoparticles) that are injectable by their small size constitute a vast field of research. [10]. 

Faster or slower gelation kinetics would affect the injectability/mass transfer or the molding 

of bulk gel. The objectives of this review are to provide a summary of injectable hydrogel 

systems, describing their use in drug delivery, TE/regenerative medicine, and space-filling 

applications, also a mechanism for in situ gelations(Fig.1). 

 

Figure No. 1: Mechanism of injectable hydrogels 11 

2.1. Physical crosslinking mechanisms 

2.1.1 Ionic crosslinking 

One of the principles of making ionic cross-linked hydrogels is to mix ionizable polymers 

with counter-ions. By changing the temperature, pH, or concentration of ions, the dynamics 

of sol-gel transition makes the injectability of the hydrogel [11]. The mechanical properties of 

the hydrogels are often further controlled by the relative molecular mass of the polymers and 

by the crosslinking density of the hydrogel, for example, by tuning the concentration of the 

polymer or the counter ions [12]. Another kind of ionic crosslinking hydrogel combines two 

oppositely charged polyelectrolytes. Here some typical polyelectrolyte includes polyline, 

poly (glutamic acid), mucopolysaccharides(HA), and sodium alginate. The gelation process is 

additionally sensitive to the concentration of gelatos, environmental pH, electric density, and 

temperature [13]. An immediate mixing of two polyelectrolytes with opposite charge 
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properties in solution will face some interactions which frequently led to a homogeneous 

mixture with large aggregates. 

2.1.2. Hydrogen bonding 

As a secondary force, hydrogen bonding (H-bonding) has dynamic nature and breaks at 

elevated temperatures. Therefore H-bonding may be a suitable crosslinking strategy for the 

preparation of injectable hydrogel. Besides it could endow the hydrogels with self-healing 

properties, thermoplasticity, and reprocessability [14]. A disadvantage associated with H-

bonding cross-linked hydrogels is their poor resistance in the water, because hydration may 

cause the dissociation of H-bonding between polymer segments. 

2.1.3. Hydrophobic interactions 

Amphiphilic polymers forma hydrogel by the association of the hydrophobic moieties as 

physical crosslink points [15]. For an injection process, the polymeric amphiphiles may have 

either lower critical solution temperature (LCST) or upper critical solution temperature 

(UCST), which ensures a sol-gel transition by the change of environmental temperature. A 

familiar example is Pluronics®. 

2.1.4. Host-guest interaction 

The complex structures formed by host-guest chemistry are also considered as a kind of in 

situ forming physical crosslink that is helpful for the design of injectable hydrogel [16,17]. 

The host-guest interaction is reversible so that it has provided a wide use of the hydrogels in 

drug release and tissue engineering [18]. One advantage is that drug molecules are often 

seized by the host moieties to avoid a burst release. 

2.1.5. π-π stacking interaction 

The π-π stacking interaction is a special spatial arrangement of aromatic compounds, which 

usually occurs between relatively π electron-rich groups and π electron-deficient groups. As a 

result, the electron clouds flow from the electron-rich side to increase the electron density on 

the electron-poor side [19]. 
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2.2. Chemical crosslinking mechanisms 

2.2.1. Michael addition reaction 

Among the in situ reactions for preparing injectable gels, Michael addition, referring to the 

conjugate addition reactions of an electrophilic conjugated system (electron acceptor) with a 

nucleophilic negative carbon ion (electron donor), attracts increasing attention in recent years 

mainly due to the high selectivity of the reaction under mild conditions [20,21]. 

2.2.2. Click chemistry 

Click chemistry is additionally a sort of reaction with relatively rapid kinetics, proceeded by 

the connection of particular small units, with high yield and high selectivity. Click chemistry 

mainly concludes four sorts of reactions, i.e. cycloaddition reaction, nucleophilic ring-

opening reaction, non-alkali carbonyl chemistry, and carbon-carbon multi-bond chemical 

reaction. Usually, the reactions need an initiator and/or catalyst but this hinders their 

bioactive application [22, 23]. Therefore, it is important to develop non-catalyst/initiator 

reaction systems for the preparation of environmentally friendly biomaterials like injectable 

hydrogels [24]. 

2.2.3. Enzymatic reaction 

Enzymatic crosslinking is another choice to get injectable hydrogels, especially for 

facilitating protein-based gels. Various enzymes extracted from both plant and animal 

sources, like horseradish peroxidase (HRP), glucose oxidase (GOx), and laccase, are utilized 

to catalyze the formation of covalent crosslinks in gelling systems [25]. For instance, HRP 

mediated crosslinking by the use of hydrogen peroxide as the substrate is reported for getting 

injectable hydrogels through the conjugation of phenol and aniline derivatives [26]. 

2.3. Dynamic covalent bonding mechanisms 

Different classes of dynamic covalent bonding including disulfide, Schiff base, oxime, 

hydrazine, and borate are applied for building injectable hydrogels [27]. In most cases, these 

bonds can be formed under physiological conditions, or triggered by internal or external 

stimuli like temperature, pH, and redox condition [28]. And the chemical equilibrium of the 

dynamic covalent bonding mediates the sol-gel transition or the degradability of the formed 

hydrogel [29]. 
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3.1 Applications of Injectable Hydrogels 

Tissue Regeneration Applications 

Currently, the main target injectable hydrogels are on cartilage and bone, whereas other uses 

are intended for tissue repairs like eye, liver, and heart, also as drug release and delivery. 

A] Angiogenesis 

Angiogenesis, the formation of novel blood vessels, maybe a critical process in tissue 

regeneration. However, inadequate vascularization of the injectable compound has long been 

a barrier, resulting in necrosis or volume reduction after implantation. To resolve this 

problem, sustained release of certain growth factors such as vascular endothelial growth 

factor and basic fibroblast growth factor can be employed. Injectable scaffolds are studied as 

an appropriate delivery vehicle because of their easy preparation and handling[30,31]. 

B] Bone repairing 

Injectable scaffolds have been extensively investigated for applications in bone tissue 

regeneration. Several factors, including macromonomer concentration, pre-treatment before 

injection, incorporation of cell adhesive peptide sequences, and controlled, localized release 

of growth factors within the injectable scaffolds, play an important role in bone 

formation[32,33]. Vishnu Priya et al developed an injectable hydrogel system consisting of 

chitin and poly (butylene succinate) loaded with fibrin nanoparticles and magnesium-doped 

bioglass. The gelatin microparticles incorporated in the hydrogel enhance bony bridging and 

mineralization within bone implant and defect interface area[34]. Huang et al have fabricated 

an injectable nanohydroxyapatite/glycol chitosan/hyaluronic acid composite hydrogel. All of 

these outcomes suggest that hydrogel could be a potential candidate for irregular bone 

regeneration (Fig.2). 
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Figure No. 2: Delivery of drug in bone repairmen using hydrogel 37 

C] Cartilage regeneration 

The limitation of cartilage tissue for self-repair and regeneration restricts the clinical 

application of TE cartilage. Kinard et al used the oligomer oligo(poly(ethylene 

glycol)fumarate) as a backbone to supply 3D injectable hydrogel networks to deliver cells 

and growth factors for cartilage reconstruction(Fig. 3).Glycosaminoglycan (GAG) content 

indicated that the hydrogel composite could also be a unique strategy for cartilage TE. Photo-

initiating composite hydrogel, methacrylate glycol chitosan/hyaluronic acid, was shown to be 

cyto compatible with significantly increased cell proliferation and cartilaginous tissue[35,36].  

The biomaterial has the potential to be used as a carrier of cells and bioactive molecules for 

treating cartilage damage. Therefore, careful control over the crosslinking density and 

structure of the macromonomers is vital to understand increased type II collagen synthesis 

and homogeneous distribution of GAG within the engineered cartilage[37,38]. 

 

Figure No. 3: Hydrogels for cartilages regeneration 

3.2. Delivery of therapeutic agents 

Another extensive application of injectable hydrogels is their role as a carrier for the delivery 

of medicine, bioactive molecules, cells, and other therapeutic agents. (Fig. 4) Hydrogels are 

good Candidates for delivery because of their water-swollen porous structure, which provides 
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an appropriate environment for bioactive molecules and cells, allowing their controlled 

release [39,40]. Hydrogels also can be designed for the targeted delivery of therapeutic 

agents. These conventional hydrogels may contain toxic crosslinkers and catalysts, whereas 

some injectable hydrogels are often physically cross-linked to render them more 

biocompatible. Moreover, better homogenous encapsulation and minimal invasive 

administration are additional advantages of injectable hydrogels for this application [41, 42].  

Among these, stimuli-responsive hydrogels can eject therapeutic drugs by changing their 

physical or chemical conditions (e.g. shrinkage) in response to external changes to their 

environment [43]. Double-walled microparticles loaded with anticancer drugs and embedded 

in an injectable alginate hydrogel showed superior results compared with free drugs for the 

treatment of breast carcinoma [44]. An insulin-loaded injectable gel composed of 

carboxymethyl-hexanoyl chitosan and integrated lysozyme nanoparticles was used for the 

management of problems associated with diabetes [45]. 

 

Figure No. 4: Delivery of therapeutic agents by Injectable hydrogels 

3.3. For Minimally Invasive Surgery 

The use of injectable hydrogels is again for endoscopic submucosal dissection and vascular 

embolization. Endoscopic submucosal dissection (ESD) may be a minimally invasive 

surgical procedure for the removal of early-stage tumors located in the alimentary canal. ESD 

separates the tumor from the muscular layer and helps to facilitate tumor removal[46]. 
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3.4. Micro- And Nanocomposite Injectable Hydrogels 

The use of micro-and Nanofillers has emerged as a strategy for generating hydrogel systems 

equipped with sets of advanced properties. It should be noted that the integration of 

nanomaterials into the structural network not only provides the hydrogel with properties of 

the fillers but also contributes to determining the bulk mechanical and biological behavior. 

For instance, mechanical reinforcement of hydrogels, measured as the increase of the elastic 

modulus, can be obtained following this strategy[47,48]. 

4. Advantages 

• It is easy in handling. 

• It can reach very deep tissue defects. 

• It is minimally invasive. 

• It has excellent defect margin adaptation. 

• It offers to sustain the release of medicament from several days to a month and reduces 

the need for frequent dosing, thus increase patient compliance. 

• An injectable hydrogel is clinically more convenient and simple to be used in traditional 

hydrogels. 

• Multi-functional injectable hydrogels are capable of entrapping and delivering multiple 

therapeutic agents. 

• They are porous in nature and allow nutrient transport. 

• They have an aqueous environment for cells. 

• They are easily biocompatible. 

5. Disadvantage 

• It’s more expensive. 

• They are physically weak. 
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• It is difficult to sterilize it. 

CONCLUSION: 

Injectable hydrogel is often used for a controlled release of protein drugs like insulin by 

subcutaneous injection. There are various advantages including direct injection without any 

surgical procedure, no clogging during injection, straightforward drug loading to the polymer 

solution. Also dry powder form, easy to dissolve, easy sterilization by UV, simple dose 

adjustment, systemic biocompatibility with no inflammatory reaction, as well as less 

requirement of organic solvents during fabric. It has minimally invasive biomedical 

procedures, including endoscopic submucosal dissection, vascular chemoembolization, tissue 

engineering, and neural and cardiac tissue repair.  

The clinical application of hydrogels remains limited by their mechanical properties and 

difficulties in sterilization. Commercially available examples of hydrogels are Granugel 

(ConvaTec) and Aquaflo (Covidien) used in wound healing. To the best of our knowledge, no 

injectable hydrogel within the surgical application has yet reached the market. Despite the 

pathway toward materials that can be clinically applied being studied with hurdles, 

researchers have identified chemistries, polymer chain lengths, and module concentrations 

that allow for tuning the mechanical behavior of the material and introducing advanced 

properties, for example, antimicrobial activity, self-healing, adhesiveness, and conductivity. 

FUTURE PROSPECTIVE: 

A wide range of injectable hydrogels is prepared and evaluated for various biomedical 

applications. Design approaches for the development of injectable hydrogel are based on in 

situ gelations and the shear-thinning behavior of hydrogels. While in situ gelations supports 

effective circumferential coverage of defects and host integration, the use of shear-thinning 

hydrogels avoids the involvement of any external problem. Gelling time and the nature of 

triggers are critical parameters for in situ gelling systems, whereas self-assembling processes 

flow under moderate pressure, and self-healing after injection dictates the success of shear-

thinning hydrogels.  

Attempts have been made to improve the mechanical properties of injectable systems by 

employing multitriggers and multi-crosslinking methods. The concept of shear-thinning 

hydrogel is comparatively new within the field of injectable hydrogels and studies are mostly 
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restricted to in vitro. Very few systems are reported to be usedin vivo, having satisfied all the 

physical, structural, and mechanical properties. So far, the majority of studies conducted on 

injectable hydrogels have been short-term and conducted on animal models.  

Decellularized extracellular matrix is another exciting strategy that has been used for making 

shear-thinning hydrogels and has demonstrated tissue regeneration potential. Safety concerns 

and sterility issues related to decellularized ECM must be addressed before the wide use of 

such systems is possible. Tracking the material upon injection and erosion by imaging 

approaches will prove beneficial. There are only a couple of products supported by injectable 

hydrogels currently available on the market, apart from those used as soft tissue augmenting 

agents and drug delivery depots. The designing of biomimetic hydrogels having tunable 

mechanical, gelation (for in situ gelling systems), self-healing (for shear-thinning systems), 

and degradation properties is essential for successful clinical translation of injectable 

hydrogels for various biomedical application. 
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