Human Journals

Research Article

July 2022 Vol.:24, Issue:4

© All rights are reserved by Pooja et al.

HPLC Analysis and Quantification of Beta-Sitosterol Marker in Eye Drop and Ophthalmic Gel of *Boerhavia diffusa* Roots Aqueous Distillate

Pooja*, Zubair Ashfa, Kanoujia Jovita

Hygia Institute of Pharmacy, Hygia Institute of Pharmaceutical Sciences & Research Faizullahganj, Prabhandh Nagar, Ghaila Road, Lucknow-226020 India.

Amity Institute of Pharmacy, Amity University Gwalior-474005 Madhya Pradesh (U.P.) India.

Submitted:24 June 2022Accepted:29 June 2022Published:30 July 2022

Keywords: Beta-sitosterol, aqueous distillate, HPLC, *Boerhavia diffusa* Linn.

ABSTRACT

This work is based on a valid HPLC method evolved and quantification of test eye drop along with an ophthalmic gel of *Boerhavia diffusa* roots aqueous distillate was analyzed. The research method is based on the separation and quantification of beta-sitosterol in eye drop and ophthalmic gel in aqueous distillate of the plant. The method response of Beta-sitosterol was a straight-line function concentration range 1–10 µg mL–1 was found to be exact and valid. This HPLC method may be handed-down as a quality control tool for quantification of the marker contemporaneously in eye drop and ophthalmic gel of an aqueous distillate of *Boerhavia diffusa* roots as well as marketed formulation (Itone).

www.ijppr.humanjournals.com

INTRODUCTION:

Notwithstanding scientific effectiveness, Acceptability of Ayurvedic and folk medicines in

the world market is less. The affirmations of Ayurvedic formulations at worldwide level will

only be increased by advancements of Ayurvedic research. This can be executed through the

embodiment of advanced techniques. Here by HPLC analytical technique we can estimate the

major bioactive phytoconstituents.

Thus, here HPLC of Boerhavia diffusa Linn. (B. diffusa) 'Punarnava or Rakhtpunarnava will

be analysed as it is primitive medicine and classified as "rasayana" on account of its

therapeutic, chemical and ethnopharmacological benefits. Root of B.diffusarestrainssome

Vital alkaloids, rotenoids, lignans which are named as punarnavine, boeravinones A-F,

liriodendrons, respectively. Flavonoids, amino acids, beta-sitosterols andtetracosanoic,

esacosanoic, stearic and ursolic acids, used in chronic ailment. The entire plant was used in

treatment of enlargement of the spleen, cancer, jaundice, dyspepsia, inflammation, abdominal

pain, anti-stress, tonic and carminative agent.

The present work is specific and consistent by HPLC method validated and enumerated for

quantification of test eye drop and ophthalmic gel of the roots of Boerhavia diffusa aqueous

distillate and marketed formulation Itone eye drop from Dey's Pharmaceutical, Calcutta. This

trend method for accompanying separation and quantification of this marker Beta sitosterol

from any plant matrix. Quality control and quantification of the marker, as well as marketed

formulation, has been done by this HPLC method.

PROCEDURAL DEVELOPMENT:

In the proposed method of validation for the determination of beta- sitosterol in a matrix

environment required adequate resolution of target moiety in the chromatogram. The desired

work was run by Acetonitrile (ACN): Phosphate buffer (pH 7.2) in a ratio of 95:5 v/v as

mobile phase. The strapping and sharp peak was established. Detected at 280 nm and flow

rate was maintained at 1.0 ml/min.

PREPARATION OF MOBILE PHASE:

Acetonitrile and Phosphate buffer (pH 7.2) 95:5 v/v was used as mobile phase, filtered by

Millipore filtration assembly of 0.45 mm diameter paper, it was degassed and sonicated in the

ultrasonicated bath.

Citation: Pooja et al. Ijppr.Human, 2022; Vol. 24 (4): 232-242.

PREPARATION OF SAMPLE SOLUTION:

(1µg/ml) sample solution of both eye drops and the ophthalmic gel was diluted in methanol,

Mixed well and degassed with the help of sonication, filtered using HPLC filter for HPLC

analysis.

PREPARATION OF STANDARD SOLUTION:

Marker beta-sitosterol (1µg/ml) standard solution was diluted in methanol mixed well and

degassed by sonication, filtered using HPLC filter for HPLC analysis.

The calibration curve of marker beta-sitosterol was prepared in methanol in the range of 1-

10μg/ml concentration. The correlation coefficient was 0.997, it indicates good linearity and

obeys Beer's Lambert law.

METHOD VALIDATION:

HPLC method was developed by using Eclipse plus C 18 3.5 µm diameter, with a mobile

phase of Acetonitrile: Phosphate buffer (pH7.2) (95:5 v/v) at the flow rate 1.0 ml/min with

50µl injection volume and UV detection at 280 nm as par the objective. The retention time

for beta-sitosterol was found 23.72 min. The peak obtained was set on in this method hence

selected for the study. The HPLC method developed was validated in different matrix

environments as per ICH guidelines. Following parameters were used.

LINEARITY:

Beta sitosterolin six concentrations were analysed, Plots of calibration curve were in the

concentration range ($1\mu g/ml$) generated by replicating analysis (n = 3). The peak areas were

plotted. The sample peak was identified by comparison of retention time (Rt) and UV

absorption spectrum of standard.

ACCURACY:

By the recoveries of beta sitosterol the accuracy of the method was evaluated and the amount

of the standard was evaluated by measuring the peak areas and by fitting these values to the

straight-line equation of calibration curve.

Citation: Pooja et al. Ijppr.Human, 2022; Vol. 24 (4): 232-242.

MATERIALS AND METHODS

CHEMICAL AND REAGENTS

Beta-sitosterol was obtained as a gift sample from Natural Remedies Pvt Ltd., India. HPLC

grade methanol, acetonitrile and water were obtained from E. Merck, Mumbai, India.

COLLECTION OF PLANT MATERIALS:

Plant samples Boerhavia diffusa Linn. (Roots) were collected from natural habitats of Uttar

Pradesh village Sheopura (Balrampur) India and local market of Lucknow Uttar Pradesh

India. The samples were authenticated by National Botanical Research Institute, Lucknow.

(SPECIFICATION No: NBRI-SOP-202). The plants were washed with water and air dried.

Roots were collected in separate paper covers and dried in shade for 15 days. Powdered using

Homogenizer and stored at room temperature in airtight containers.

METHOD OF PREPARATION:

Coarsely powdered drug was soaked in water and kept over-night. This makes the drugs soft

and boiled in (1:16) where 1 part is drug and 16 parts are distilled water poured into the

distillation assembly and boiled. The condensed vapour was collected in a receiver. The

aliquots collected contain aroma of the active ingredients A condensed aqueous distillate of

roots, were stored in airtight container, and used for HPLC study.

METHOD (S) STANDARD STOCK SOLUTIONS AND CALIBRATION CURVE

The pure drug (beta sitosterol) standard stock solutions were prepared by dissolving 10 mg of

the drug in 10 ml of methanol to get concentration of 1000 µg/ml to 200 µg/ml.

CALIBRATION AND QUALITY LEVELS

The calibration curve having a range of 1µg/ml to 10 µg/ml and regression coefficient is

0.997 was drawn up by serial dilutions for precision, accuracy and ruggedness studies.

MARKETED FORMULATION

For HPLC analysis Itone eye drop 0.2 ml was extracted with 200 ml of Methanol in a Soxhlet

apparatus for 14 hours, followed by filtration (5E syringe filter), concentrated to 5 ml,

followed by transferring its contents to 10 ml standard volumetric flasks and volume made up

to mark with methanol.

Citation: Pooja et al. Ijppr.Human, 2022; Vol. 24 (4): 232-242.

235

CHROMATOGRAPHIC PROCEDURE

A C18 column (250 mm X 4.6 mm, 5 μm) HPLC column was used. The mobile phase was a

Gradient mixture of Acetonitrile and water and filtered through 0.45 µm Millipore filter

degassed by sonication for 30 min. The flow rate was adjusted to 1.0 ml/min. Injection

volume was adjusted to 20 µl and detection was made at 270 nm. Instrumentation and

Chromatographic conditions are presented in Table 1.

RESULT AND DISCUSSION

METHOD VALIDATION

ICH harmonized tripartate guidelines Q2 (R1) were followed for the validation of the

developed analytical method (ICH Harmonised Tripartite Guideline, Validation of Analytical

Procedures: Text and Methodology Q2 (R1), Nov. 2005.

SELECTIVITY AND SPECIFICITY

During the UV scan no appreciable difference was found in the spectra of reference standards

and the analysed samples. Hence, the method demonstrated a high degree of selectivity. Refer

Figure 1 and Figure 2 for HPLC chromatograms of Plant sample and Marketed formulation

of Boerhavia diffusa Linn. Aqueous distillate formulations (eye drop, ophthalmic gels)

respectively.

SYSTEM SUITABILITY

System suitability tests were used to verify whether the resolution and reproducibility of the

chromatography system were acceptable for the analysis. For Beta sitosterol in eye drop and

ophthalmic gel of Boerhavia diffusa aqueous distillate % CV values for area and retention

time was found to be <2% indicating that the system was suitable to carry out further

analysis.

RECOVERY

Recovery of the method was evaluated and useful for all the three components within

acceptable limits (85.0 to 115.0%). This indicated that the method was reliable and accurate.

Citation: Pooja et al. Ijppr.Human, 2022; Vol. 24 (4): 232-242.

RUGGEDNESS

The proposed method was not governed by the factors considered for ruggedness study. Change in flow rate and mobile phase composition affected the retention time of the analytes, but the results were satisfactory since % CV was <2%.

STOCK SOLUTION STABILITY

The stability of the master stocks of all the standards was evaluated by storing the stocks in the refrigerator at 2-8°C for 72 hours. This was followed by contrasting concentrations of these stocks against freshly prepared stocks for each standard.

CONCLUSION

An authentic and reproducible HPLC method is validated quantification of the test eye drop and ophthalmic gel, beta-sitosterol stock solution was made using methanol. The calibration curve had a range of $1\mu g/ml$ to $10 \mu g/ml$ and a regression coefficient of 0.997 figures6. The quantification of the marker in the plant root distillate was accomplished. The HPLC retention time for beta sitosterol was 23.72 min. Each formulation contained (1:16) of plant roots aqueous distillate. Test sample of eye drop formulation contained 0.86 % of beta sitosterol and Test sample of in-situ gel formulation contained 0.39 % of beta-sitosterol figure 1-5.

Instrumentation and Chromatographic Conditions as Given Below—

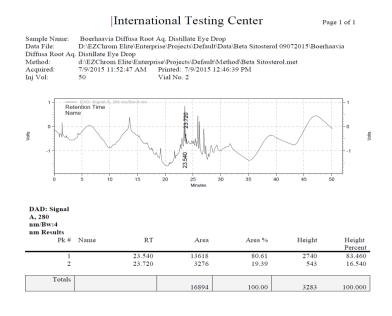
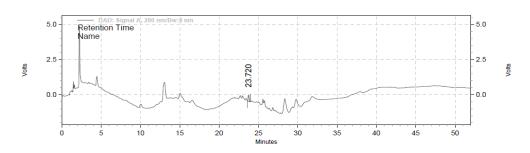


Figure 1: HPLC profile of Eye Drop of Boerhavia diffusa roots.

International Testing Center

Page 1 of 1

Sample Name:


Boerhaavia Diffusa Root Aq. Distillate IN SITU Gel D:\EZChrom Elite\Enterprise\Projects\Default\Data\Beta Sitosterol 09072015\Boerhaavia Data File:

Diffusa Root Aq. . Distillate IN SITU Gel

d:\EZChrom Elite\Enterprise\Projects\Default\Method\Beta Sitosterol.met 7/9/2015 12:44:53 PM Printed: 7/9/2015 4:08:24 PM Method:

Acquired: Inj Vol:

Vial No. 3

DAD: Signal A, 280 nm/Bw:4 nm Results

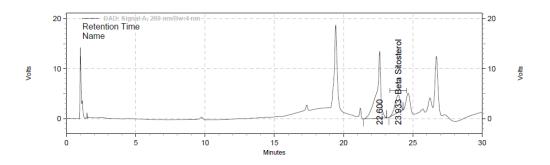
Pk #	Name	RT	Area	Area %	Height	Height Percent
1		23.720	7277	100.00	919	100.000
Totals			7277	100.00	919	100.000

Figure 2: HPLC profile of Ophthalmic Gel of Boerhavia diffusa roots.

International Testing Center

Page 1 of 1

Sample Name: Beta Sitosterol (Marker)


Data File: D:\EZChrom Elite\Enterprise\Projects\Default\Data\Beta Sitosterol 09072015-R2 Beta

Sitosterol (Marker).dat

Method: d:\EZChrom Elite\Enterprise\Projects\Default\Method\Beta Sitosterol.met

Acquired: 7/9/2015 4:49:57 PM Printed: 7/9/2015 5:25:24 PM

Inj Vol: 50 Vial No. Vial 1

DAD: Signal A, 280 nm/Bw:4 nm Results

Pk #	Name	RT	Area	Area %	Height	Height Percent
1		22.600	598171	75.66	28078	79.187
2	Beta Sitosterol	23.933	192426	24.34	7380	20.813

Totals				
	790597	100.00	35458	100.000
	119117	7.1.7		

Figure 3: HPLC profile of Marker Beta sitosterol.

Table 1: HPLC protocol of Boerhavia diffusa roots formulations.

DETECTOR 1260 DAD Visual- G1315D Serial No. DEAAX00519		Agilent Technologies 1200		
AUTO SAMPLER	Infinity Services.			
MANUFACTURING COM				
INSTRUMENT	Agilent Technologies			
COLUMN	Eclipse plus C 18 3.5 μm			
Colonia	diameter			
FLOW RATE	1ml/min.			
DETECTION WAVELEN	280 nm			
MOBILE PHASE	Pump A Phosphate			

				buff	er pH 7.2	
		Pum	пр В	Acet	tonitrile	
		Beta	sitoste	erol in	1	
METHOD NAME		Boerhavia diffusa roots aq.				
		disti	llate			
GRADIENT TIME PROGRESS		Ti	Conc	entr	Concentr	
GRIDIENT TIME TROOKESS		me	ation A		ation B	
		0	95.09	6	5.0%	
		18	70%		30%	
		25	45%		55%	
		26	70%		30%	
		27	95%		5%	
		30	95%		5%	
INJECTION VOLUME			50 μ1			
	1	1260) DAD	Visu	al-	
DETECTOR			G1315D			
	The state of the s	Seri	al No.	DEA	AX00519	
AUTOSAMPLER		1260 ALS- G1329B,				
THE TOURNING BEAR	HUMAN	Seri	al No.	DEAI	BE00890	

			Date:- 09/07/2015
Sample Id. :-	Proc	duct name- Eye drop	
Standard Purity =	98.36 %		
Standard Gross Weight (g)	=	0.2549	
Standard T. Weight (g)	=	0.2541	
Standard Net Weight (g)	=	0.0008	1 ml
Sample Gross Weight (g)	_	62.9216	
Sample T. Weight (g)	_	0.4216	
Sample Net Weight (g)	=	62.5000	1000 ml
Standard Area =	10598		
Sample Area =	7277		
Gel Content (%) =		ple Area X Standard W dard Area X Sample W	
	=	572612.58 662375.00	
	=	0.86 %	

Figure 4: Eye drop formulation contained 0.86 % of beta-sitosterol Detected by HPLC

KY ! FY

			Date:- 09/07/2015
Sample Id. :-	Pro	duct Name- Gel	
Standard Purity =	98.36 %		
Standard Gross Weight (g)	_	0.2549	
Standard T. Weight (g)	_	0.2541	
Standard Net Weight (g)	_	0.0008	1 ml
Sample Gross Weight (g)	_	62.9216	
Sample T. Weight (g)	_	0.4216	
Sample Net Weight (g)	_	62.5000	1000 ml
Standard Area =	10598		
Sample Area =	3276		
Eye Drop Content (%)		nple Area X Standard W ndard Area X Sample W	
	-	257781.89 662375.00	
	_	0.39 %	

Figure 5: Ophthalmic gel formulation contained 0.39 % of beta sitosterol Detected.

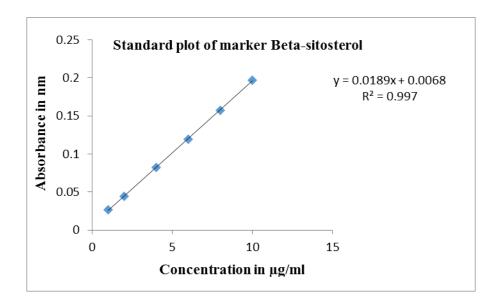


Figure 6: Regression curve of marker beta-sitosterol in PBS (7.2) at 273.6 nm.

REFERENCES

- 1. Ahmad B. & Chung-Ping Y., Boravine a dihydrosiofuraxanthone from *Boerhavia diffusa*, *Phytochemistry*. 1992, 31 (12): 4382-84.
- 2. Semwal DK, Mishra SP, Semwal RB. Ayurvedicresearch and methodology: Present status and futurestrategies. *AYU*. 2015, 36(4):364-9.
- 3. Lad V. The complete book of ayurvedic home remedies. New York: Three Rivers Press; 1999. Chopra GL. Angiosperms. Systematic and life cycle. Jalandhar, Punjab, India: S. Nagin and Co; 1969, 361-5.
- 4. Hindawi Publishing Corporation BioMed ResearchInternational; 2014. Article ID 808302:1-19.
- 5. Wahi AK, Agrawal VK, Gupta RC. Phytochemical andpharmacological studies on Boerhavia diffusa Linn (punarnava) alkaloids. National Academy of ScienceLetters. 1997; 20.
- 6. Kirtikar KR, Basu BD. Boerhavia diffusa. Indian MedicinalPlants. Allahabad, India: *Lalit Mohan Basu Publications*; 1956, 2045-8.
- 7. Chakraborti KK, Handa SS. Antihepatotoxic activity of Boerhavia diffusa. *Indian Drugs*. 1989; 27(13):161-6.
- 8. Aslam M. Asian medicine and its practice in Britain. In:Evans WC, editor. Pharmacognosy. London UK: SaundersCompany Ltd; 1996:499-500.
- 9. Rawat AK, Mehrotra S, Tripathi SC, Shome U.Hepatoprotective activity of Boerhavia diffusa L.roots-a popular Indian ethnomedicin. Journal of Ethnopharmacology. 1997; 56(1):61-6.
- 10. Indian Pharmacopoeia. Indian PharmacopoeiaCommittee. New Delhi: Ministry of Health and FamilyWelfare, Government of India; 2007; 1423-4.
- 11. Ayurvedic Pharmacopoeia of India. Dept of AYUSH.New Delhi: Ministry of Health and Family Welfare, Government of India; 1990;126-8.
- 12. Singh A , Sharma H, Singh R, Pant P, Srikant N, Dhiman KS. Identification and Quantification of Boeravinone-B in Whole Plant Extract of *Boerhavia diffusa* Linn and in its Polyherbal Formulation. Journal of Natural Remedies. 2017; 17 (3):88-95