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ABSTRACT  

In normal cells, TGF-β, acting through its signaling pathway, 

stops the cell cycle at the G1 stage to stop proliferation, induce 

differentiation, or promote apoptosis. When a cell is 

transformed into a cancer cell, parts of the TGF-β signaling 

pathway are mutated, and TGF-β no longer controls the cell. 

These cancer cells proliferate. The surrounding stromal cells 

(fibroblasts) also proliferate. Both cells increase their 

production of TGF-β. The pharmacophore generated can be 

used for the discovery of diversified structures that can be 

potential TGFRB1 inhibitors, and to evaluate how well any 

novel compound maps onto the pharmacophore developed 

during the study, using inhibitors against TGFRB1 possessing 

distinct features which may be responsible for the activity of 

the inhibitors. The models were not only predictive within the 

same series of compounds but different classes of diverse 

compounds were also effectively mapped onto most of the 

features important for activity. It can be generated as a 

Common feature pharmacophore and 3D QSAR 

pharmacophore. This TGF-β acts on the surrounding stromal 

cells, immune cells, and endothelial and smooth muscle cells. It 

causes immunosuppression and angiogenesis, which makes 

cancer more invasive. TGF-β also converts effector T-cells, 

which normally attack cancer with an inflammatory (immune) 

reaction, into regulatory (suppressor) T-cells, which turn off the 

inflammatory reaction. 
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INTRODUCTION  

TGFβs can be detected in human breast cancer specimens. Moreover, tumor tissue appears to 

express higher levels of TGFβ than the corresponding normal tissue (1-4), and the association 

of TGFβs with cancer appears to be strongest in the most advanced stages of tumor 

progression (5). For example, TGFβ1, -2, and -3-specific mRNAs could be detected in the 

majority of primary breast cancers (6) and appeared to be more abundant than in normal 

breast tissue. In addition, several studies have reported immunostainable TGFβ1, -2, and -3 to 

be associated with the majority of primary human breast carcinomas (7). Furthermore, a 

significantly greater fraction of invasive carcinomas expressed immunodetectable TGFβ than 

in situ carcinomas (8), and the strongest staining was observed in invasive carcinomas with 

associated lymph node metastases, suggesting that there may be a semi-quantitative 

relationship between TGFβ production and tumor progression (9). Besides these reports of 

increased TGFβ expression in breast carcinomas (10), plasma levels of TGFβ have also been 

reported to be elevated in patients with breast cancer (11-12), to correlate with disease stage, 

and to decrease the following resection of the primary tumor (13-14). A common feature 

pharmacophore doesn’t give us the estimated activities (15-17). Hence 3D QSAR 

pharmacophore models or quantitative pharmacophore models were generated in this study. 

These models can predict the activity values and are more dependable than the common 

feature pharmacophore. 

Transforming growth factor (TGF-) is a multifunctional cell regulatory peptide that has 

varying effects on extracellular matrix synthesis, differentiation, proliferation, and tissue 

repair. At least three TGF-isoforms (TGF-1, -2, and -3) have been discovered in mammalian 

tissues, and it is known that these isoforms interact biologically with the two distinct TGF-R1 

and TGF-R2 receptors (18). TGF- typically inhibits cell proliferation, but ironically, it may 

also have a significant role in fostering the onset of several malignant illnesses. Researchers 

have found evidence of TGF-overexpression in cancer cell lines grown in culture and the 

location of these cells in tumor tissues, and they have hypothesized that TGF has a strong 

stimulatory influence on the development of malignant epithelial neoplasms (19). Regarding 

mesenchymal neoplasms, TGF expression in various tumors that produce osteocartilaginous 

matrices, such as osteosarcomas and chondrosarcomas, has been studied. TGF- controls the 

synthesis of bone and cartilage by promoting the growth of osteoblasts and osteoclasts as well 

as the production of extracellular matrix in both healthy and malignant tissues (20). A 

pluripotent cytokine called transforming growth factor (TGF-beta) is involved in the 
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development, differentiation, adhesion, migration, and modulation of the immune response of 

cells (21). 

MATERIALS AND METHODS 

HYPOGEN (Training set) 

Molecules collected from different databases were categorized into two sets a training set and 

a test set. Training set molecules were selected based on structure and activity diversity. The 

24 molecules with activity values ranging from 0.002 µM - 31 µM (5-order magnitudes) were 

selected. The remaining molecules were treated as a test set, which consists of 48 molecules. 

Training set molecules contain an equal number of highest active, moderately active, and 

least active molecules. Each category of molecules has either structure diversity or activity 

diversity to represent the whole chemical space. After careful observation of the molecules, a 

few features were finalized for 3D QSAR pharmacophore hypothesis generation. The features 

selected for hypothesis model generation were given below. 

Pharmacophore model validation using known TGFBR1 inhibitors 

The validity of any pharmacophore model needs to be ascertained by screening some known 

inhibitors (test set) that are retrieved from the Kinase Inhibitor Databases to check how many 

active molecules are picked in the screening process, how their predicted activities are 

correlated with the experimental activities and the efficiency in reducing the false positives or 

negatives. Hypo-1 was used to screen 48 known high, medium, and low active TGFBR1 

inhibitors of the test set. Database mining was performed in Catalyst software using the 

BEST flexible searching technique. Some parameters42 such as hit list (Ht), number of active 

percent of yields (%Y), percent ratio of actives in the hit list (%A), enrichment factor of 1.83 

(E), False negatives, False positives and Goodness of hit score of 0.78 (GH) are calculated 

(Table 1) while carrying out the pharmacophore model and virtual screening of test set 

molecules.  
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Figure no 1: Training set molecules used in pharmacophore generation 
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Table no 1: Statistical parameters from screening test set molecules. 

S. No Parameter Molecules 

1 Total molecules in the database (D) 48 

2 Total Number of activities in the database (A) 23 

3 Total Hits (Ht) 24 

4 Active Hits (Ha) 21 

5 % Yield of actives [(Ha/Ht)*100] 87.50 

6 % Ratio of actives [(Ha/A)*100] 91.30 

7 Enrichment factor (E) [(Ha*D)/(Ht*A)] 1.83 

8 False Negatives [A - Ha] 2 

9 False Positives [Ht - Ha] 3 

10 The goodness of Hit Score 0.78 

 

While the False positives and negatives, 3 and 2 respectively, are minimal, an enrichment 

factor of 1.83 is a good indication of the high efficiency of the screening. In 24 molecules 

predicted to be active, 21 molecules were correctly picked, thus missing only 2 false 

negatives with 3 false positives overall. GH score assessment of hit lists was used to optimize 

the working pharmacophore model as databases with known biological activities. It is to be 

noted that the technique can also be used to focus a list of active molecules as a post-HTS 

processing or to prioritize a virtual library as a pre-HTS screening. 

Database Screening 

The representative pharmacophore hypothesis (Hypo 1) was used as a search query to 

retrieve compounds with novel structural scaffolds and desired chemical features from a 

multi-conformer Catalyst-formatted database. This database is developed using ~1 million 

compounds present in the GVK BIO in-house database. The Fast Flexible Search 

Databases/Spread Sheets method in Catalyst was used to search the database. 

Virtual Library screening studies 

The Hypo-1 model was used to screen the Asinex database consisting of ~4M molecules, 

which yielded 4927 hits comprising 324 high, 1726 medium, and 2877 low active molecules. 

The highly active molecules were those <1 μM, moderately active (1-10 μM), and inactive 
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(>10 μM). Only 324 hits are found to be having activities below 0.1 μM cut-offs. One can 

consider all the 324 hits that are predicted to be highly active could become a good source for 

further evaluation, while some others in medium activities cannot be completely neglected. 

Some of the hits with good predicted activities were further subjected to docking studies to 

reduce the number of false positives and false negatives. Based on the earlier observations 

and the model developed in this study, it is observed that this virtual screening effort 

produced relatively more hits on which further experimental studies could be carried out. A 

few molecules with high predicted activity and Predicted activity are given in Figure 2. 
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Figure no 2: Molecules retrieved from the Asinex database with predicted TGFRB1 

inhibitory activity along with its GLIDE score values. 

Validation of pharmacophore model using Test set molecules: 

A library of molecules with known activities was taken for the validation of the selected best 

pharmacophore model. This set of molecules contains 48 molecules, their activity values 

range from 0.002 µM-31 µM. Structures of test set molecules were given below. We score 

the hypothesis based on fit values and regression plot generation. This hypothesis scoring 
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gives the estimated activity values as well as fit values. Better the fit value greater the 

activity. The later correlation was observed between the experimental activities and 

pharmacophore model predicted activities, which shows a good correlation i.e., 0.832. 
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Figure no 3: Showing the test set molecules used in the pharmacophores model (Hypo1) 

validation 

RESULTS AND DISCUSSION  

A set of ten statistically significant pharmacophores (hypotheses) models was generated 

using 24 training set compounds and features mentioned above. Details of different 

pharmacophores hypotheses generated were listed in the below table. 
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Table no 2: Statistical significance of pharmacophore models generated using HypoGen 

Hypo NO Total cost Cost-difference RMS Correlation® 

1 109.382 107.571 1.274 0.932 

2 116.514 100.439 1.454 0.911 

3 120.806 96.147 1.570 0.896 

4 124.597 92.356 1.767 0.863 

5 127.048 89.905 1.793 0.859 

6 127.614 89.339 1.823 0.854 

7 141.771 75.182 2.135 0.793 

8 146.97 69.983 2.254 0.765 

9 148.713 68.24 2.266 0.762 

10 150.645 66.308 2.304 0.753 

Fixed cost: 85.953; Configuration cost: 15.155; Null cost: 216.953 

All the above ten hypotheses were having a good correlation between actual or experimental 

activity and the activity predicted by the pharmacophores hypotheses in the training set. All 

the models have less RMS values indicating that they have good correlation. All the 

pharmacophores hypotheses have a cost difference greater than 60, which indicates that the 

models generated have more than a 90% correlation. All the hypotheses have cost 

components very close to ideal pharmacophores hypotheses. Where the cost difference was 

measured as the difference between the Null cost and the total cost of the pharmacophores 

hypotheses;  

Cost difference = Null cost-total cost 

The best pharmacophores are taken as hypothesis 1 based on internal validation. The best 

pharmacophores hypothesis has the highest cost difference (109.382), lowest error cost, 

lowest RMS difference (1.274), and the best correlation coefficient (0.932). This 

Pharmacophores hypothesis has one hydrogen bond acceptor, two hydrophobic features, and 

one hydrogen bond donor feature. The best pharmacophores have the highest cost difference 

of 107.571. The following figure shows the features present in the best pharmacophores 

hypothesis (Hypothesis-1). Pharmacophores features present in the best pharmacophores 

hypothesis were color-coded with green, cyan, and orange colors representing the hydrogen-

bond acceptor feature, hydrophobic feature, and ring aromatic features respectively.  
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Table no 3: Features present in the Best pharmacophores model selected from top 

scoring ten pharmacophore models using HypoGen 

S. NO Feature name 
Feature 

indication 

No. of 

features 

Colour 

indication 

1 Hydrogen-bond acceptor HBA 1 Green 

2 Hydrophobic feature H 2 Cyan 

3 Ring Aromatic RA 1 Orange 

Total number of features4 
 

Hypo1:1HBA+2HY+1RA 

 

Figure no 4: (A) The best hypothesis model Hypo1 produced by the 3D QSAR 

pharmacophores generation module in D.S 2.5 software. 

 

Figure no 5: Showing the 3D arrangement of pharmacophores features. 
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Distance between pharmacophores features is reported in angstroms. Ring aromatic and 

Acceptor features have projections. Hydrophobic features show only spheres. Ring aromatic 

feature showing plane also. 

Table.no 4: 3D geometrical arrangement of features in Angstrom units 

S. No Features Distance in A0 

1 Hydrophobic1 and Hydrophobic2 features 6.80 

2 Hydrophobic1 and Ring aromatic features 4.072 

3 Hydrophobic1 and Hydrogen bond Acceptor features 7.377 

4 Hydrophobic2 and Ring aromatic features 6.52 

5 Hydrophobic2 and Hydrogen bond Acceptor features 3.038 

6 Hydrogen bond Acceptor and Ring aromatic features 6.134 
 

 

Figure no 6. Mapping of the most active compound of the training set on the best 

Pharmacophores hypothesis model (Hypo 1) 

 

Figure no 7: Mapping of the least active compound of the training set on the best 

Pharmacophores hypothesis model (Hypo 1) 
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Best Model: Hypothesis-1 has the following statistical parameters to show its internal 

validity. 

i. Cost difference: 107.571 

ii. Training set correlation coefficient: 0.932. 

Table no 4: Actual or Experimental activities and Quantitative pharmacophores model 

estimated activity values of training set molecules used for pharmacophores model 

generation 

Compound No Actual Activity (IC50, uM) Estimated Activity (IC50, uM) 

1 0.014 0.067 

2 0.023 0.054 

3 0.03 0.043 

4 0.03 0.082 

5 0.048 0.096 

6 0.071 0.06 

7 0.088 0.075 

8 0.093 0.14 

9 0.1 0.11 

10 0.12 0.13 

11 0.15 0.45 

12 0.15 0.076 

13 0.2 0.045 

14 0.54 0.11 

15 1 1.8 

16 2.6 7.9 

17 3.5 4.7 

18 4 6.4 

19 7.9 5 

20 9.3 4.9 

21 11 3.2 

22 16 17 

23 20 14 

24 31 5.3 
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Figure no 8: Correlation graph between experimental and Hypo 1-estimated activities 

of training set molecules 

Validation of pharmacophores model using Test set molecules: 

A library of molecules with known activities was taken for the validation of selected best 

pharmacophores model. This set of molecules contains 48 molecules, their activity values 

range from 0.002 µM-31 µM. Structures of test set molecules were given below. We score 

the hypothesis based on fit values and regression plot generation. This hypothesis scoring 

gives the estimated activity values as well as fit values. Better the fit value greater the 

activity. Later correlation was observed between the experimental activities and 

pharmacophores model predicted activities, which shows good correlation i.e., 0.832. 

 

Correlation = 0.932 
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Figure no 9: Showing the test set molecules used in pharmacophores model (Hypo1) 

validation 
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Figure no 10: Pharmacophores mapping of the most active compound of test set with 

hypothesis model Hypo 1 

 

Figure no 11: Pharmacophores mapping of the least active compound of test set with 

best hypothesis model Hypo 1 

 

Figure no 12: Showing correlation (R = 0.832) graph between experimental and Hypo 1-

estimated activities (uM) of the test set. 
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Docking Studies 

The crystal structure of TGFBR1 (PDB ID: 1PY5) was used for the docking studies. The 

protein 3D structure was downloaded from the protein databank (PDB)124. The hydrogen 

atoms were added to the proteins and further minimization was performed. The reliability of 

this docking method to predict the bioactive conformation was validated using the X-ray 

structure of TGFRB1 in complex with a co-crystal molecule 4-(3-pyridin-2-yl-1h-pyrazol-4-

yl) quinoline (PY1). Co-crystal PY1 re-docked into the active site of TGFRB1 and the best 

conformation with the lowest docking score was selected as the most probable conformation. 

The superimposition of the docking pose of PY1 with the co-crystal of 1PY5 is shown in 

figure 13 the root-mean-square deviation (RMSD) between these two poses is 0.497. A set of 

72 human TGFBR1 inhibitors was docked into the active site of TGFBR1 using the Glide 

docking program. The TGFBR1 grid boxes were defined by the center of the bound inhibitors 

of the proteins. The enclosing box and binding box dimensions were fixed to 14Å, 14 Å, and 

14 Å, respectively. The top 20 poses were collected for each compound. Docking poses were 

energy minimized using the OPLS-2001 force field. The best pose was selected based on the 

Glide score and the favorable interactions formed between the compound and amino acid 

residues of the TGFBR1 active site. The entire set of 72 inhibitors was docked into the active 

site of TGFBR1 and the correlation was calculated between the glide score and the IC50 by 

linear regression analysis method. An acceptable correlation coefficient (r2) of 0.78 was 

obtained between experimental IC50 and docking score (Fig. 13). This correlation strongly 

indicates that the binding conformations and binding models of the TGFRB1 inhibitors of 

TGFRB1 are reliable. 

 

Figure: 13. Superimposition of crystal ligand (pink) of 1PY5 and predicted binding pose 

(grey) of crystal ligand generated.  
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Figure 14 Graphical representation of the correlation between dock score and 

experimental activity of TGFBR1 inhibitors 

The high-fit value compounds obtained from the virtual screening of the Asinex database are 

docked into the TGFBR1 protein active site. The compounds are ranked based on score. The 

best predicted bound compounds are given in Figure 15. The compound-1 is binding to the 

protein active site and making hydrogen bond interaction with the main chain of His283 (2.3 

Å). The compound-3 is binding to the protein active site and making hydrogen bond 

interaction with the main chain of His283 (2.37 Å). The compounds-5 is binding to the 

protein active site and making hydrogen bond interaction with the main chain of His283 (2.80 

Å) and two more hydrogen bond interactions with Ser 280, one with main chain nitrogen 

(2.71 Å), another hydrogen bond interaction with side chain OH (2.02 Å) and one more 

hydrogen bond interaction with nitrogen present in the side chain of Lys232 (2.8 Å). The 

compounds-7 is binding to the protein active site and making hydrogen bond interaction with 

the main chain of His283 (2.53 Å) and two more hydrogen bond interactions with Ser 280, 

one with main chain nitrogen (2.92), another hydrogen bond interaction with side chain 

OH(1.62 Å). The predicted binding poses of a few high active compounds are given in 

Figure 15. The compounds are making hydrogen bonding interactions with TGFBR1 similar 

to that of crystal ligands and have a high binding affinity towards TGFBR1. 
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Figure no 15. Predicted binding mode of Compound-1(A),3(B),5(C), and 7 (D) obtained 

from docking studies. 

CONCLUSION 

The pharmacophores and docking models were generated and validated utilizing a set of 

known TGFBR1 inhibitors. Compounds bearing agreeable chemical and structural features 

are potential leads for designing strategies targeting TGFBR1. The models were not only 

predictive for the same series of compounds but also for different classes of diverse 

compounds where they were effectively mapped onto most of the features important for 

activity. In conclusion, it has been shown that modification of typical pharmacophores and a 

combination of Pharmacophores and docking-based virtual screening methods can improve 

the activity and result in identifying competitive and reversible inhibitors of TGFBR1. From 

the docking and virtual screening methods and from Pharmacological studies 9 hits were 

identified. The pharmacophore model is further used to screen putative molecules from the 

Asinexdatabase. An astute blend of pharmacophore analysis, docking procedures, and 

database search have resulted in predicting putative novel inhibitors of the TGFBR1. We 

have finally identified 9 hits from In Silico studies. 
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