IJPPR INTERNATIONAL JOURNAL OF PHARMACY & PHARMACEUTICAL RESEARCH An official Publication of Human Journals

Human Journals **Research Article** January 2023 Vol.:26, Issue:2 © All rights are reserved by Sneha Thakur et al.

Development and Validation of RP-HPLC Method for the Simultaneous Estimation of Ivermectin and Albendazole in Bulk and Tablet Dosage

Form

Sneha Thakur*1, Mohd. Abdul Rab², Keerthi Kadimcharla³

¹Associate Professor, HOD, Department of Pharmacognosy, St. Pauls College of Pharmacy, Turkayamjal Hyd, Telangana, India

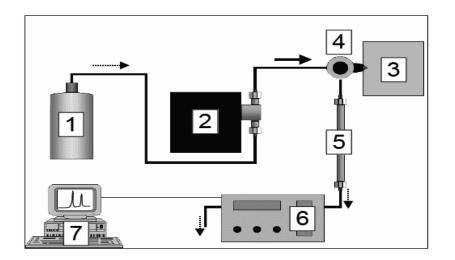
²Department of Pharmaceutical analysis, University College of Technology, Osmania University, Hyderabad, Telangana, India

³ Assistant Professor, Department of Pharmaceutical analysis, University College of Technology, Osmania University, Hyderabad, Telangana, India

Submitted:	22 December 2022
Accepted:	28 December 2022
Published:	30 January 2023

www.ijppr.humanjournals.com

Keywords: Ivermectin, Albendazole. Simultaneous Estimation, RP-HPLC


ABSTRACT

Background: A new rapid, specific, simple, accurate, and precise reverse phase Liquid phase chromatographic technique using convenient and handy mobile phases for simultaneous determination of Ivermectin and Albendazole in pure and tablet dosage form has been developed. **Aim:** To develop and validate an analytical method for simultaneous estimation of Ivermectin and Albendazole in pharmaceutical formulation by Reverse phase liquid chromatography. **Material and Methods:** HPLC of Waters (Model: Alliance 2695) with Phenomenex Luna C18 (4.6 mm I.D × 250mm, 5µm) column was used for chromatographic separation. It contains a waters injector and PDA Detector (Deuterium). The mobile phase consists of Methanol: Water (85:15% v/v) and the flow rate adjusted was 1ml/min. The wavelength selected for detection was 285nm

and the injection volume was 10^{μ} l. **Results and discussion**: By using the developed method, the retention time of Ivermectin and Albendazole was found to be 3.2 min and 5.4 min respectively. The method has been validated for linearity, accuracy, and precision. The linearity of Ivermectin and Albendazole was in the range of 5-25 μ g/ml and 20-100 μ g/ml respectively. The percentage recoveries obtained for Ivermectin and Albendazole were found to be in the range of 99.3 – 99.6% LOD and LOO was found to be 3.3µg/ml and 10.1µg/ml for Albendazole 1.2 and 3.8µg/ml for Ivermectin. Conclusion: The developed HPLC method offers several advantages such as rapidity, usage of a simple mobile phase, and easy sample preparation steps. Further, improved sensitivity makes it specific and reliable for its intended use. Hence, this method can be applied to the analysis of pure drug and pharmaceutical dosage forms. From the present, it can be concluded that the proposed method is simple, sensitive, precise, specific, accurate, and reproducible. Results of validation parameters demonstrated that the analytical procedure is suitable for its intended purpose and meets the criteria defined in ICH Q2R1.

INTRODUCTION

HPLC is a technique for the separation, identification, and quantification of components in a mixture. It is especially suitable for compounds that are not easily volatilized, is thermally unstable, and have high molecular weights[1]. The liquid phase is pumped at a constant rate to the column packed with the stationary phase. Before entering the column the analysis sample is injected into the carrier stream[2]. On reaching the column the sample components are selectively retained based on physicochemical interactions between the analyte molecules and the stationary phase[3]. The mobile phase moving at a steady rate elutes the components based on the operating conditions. Detection techniques are employed for the detection and quantification of the eluted components[4]. The rate of distribution of drugs between the Stationary and mobile phases is controlled by a diffusion process. If diffusion is minimized faster and effective separation can be achieved[5]. The techniques of high-performance liquid chromatography are so called because of their improved performance when compared to classical column chromatography advances in column chromatography into high speed efficient, accurate, and highly resolved method of separation[6]. A combination of drugs is mostly used to increase the spectrum of activity. Ivermectin and albendazole are one such combination that is mostly used as anthelmintic, particularly against intestinal helminthics in children. Ivermectin is a macrocyclic lactone disaccharide derived from the streptomyces avermitilis. On the other hand, albendazole is an anthelmintic[7]. The present investigation involves the development and validation of Ivermectin and Albendazole estimation of the amount of analyte present in the formulation and bulk drug. The HPLC method is selected in the field of analytical chemistry since this method is specific, robust, linear, precise, and accurate and the limit of detection is low and also it offers the following advantages[8] as Speed (many analyses can be accomplished in 20min (or) less), Greater sensitivity (various detectors can be employed), Improved resolution (wide variety of stationary phases), Reusable columns (expensive columns but can be used for many analysis), precise and reproducible[9].

1-Reservior, 2-Pump, 3-Autosampler, 4-Injection valve, 5-Column, 6-Decetor

Figure 1: HPLC Basic Instrumentation^{6,7:}

MATERIALS AND METHODS

Albendazole (Pure) from Sura labs, Ivermectin(Pure) from Sura labs, Water and Methanol for HPLC from LICHROSOLV (MERCK), Acetonitrile for HPLC from Merck

HUMAN

HPLC METHOD DEVELOPMENT:

TRAILS

Preparation of standard solution:

Accurately weigh and transfer 10 mg of Albendazole and Ivermectin working standard into a 10ml of clean dry volumetric flasks add about 7 ml of Methanol and sonicate to dissolve and remove air completely and make volume up to the mark with the same Methanol.

Further pipette 0.6ml of the above Albendazole and 0.15ml of the Ivermectin stock solutions into a 10 ml volumetric flask and dilute up to the mark with diluents.

Procedure:

Inject the samples by changing the chromatographic conditions and record the chromatograms, and note the conditions of proper peak elution for performing validation parameters as per ICH guidelines[11,12].

Mobile phase Optimization:

Initially, the mobile phase tried was Methanol: Water, and Acetonitrile: Water with varying proportions. Finally, the mobile phase was optimized to Methanol and water in proportion 85:15 v/v respectively.

Optimization of Column:

The method was performed with various columns like C18 column X- bridge column, Xterra Phenomenex Luna C 18 (4.6 x 150mm, 5 μ m) was found to be ideal as it gave good peaks shape and resolution at 1ml/min flow.

VALIDATION

PREPARATION OF MOBILE PHASE:

Preparation of mobile phase:

Accurately measured 850ml (58%) of HPLC Methanol and 150ml of Water (15%) were mixed and degassed in a digital ultrasonicated for 10 minutes and then filtered through 0.45 μ filter under vacuum filtration.

Diluent Preparation:

The Mobile phase was used as the diluents.

RESULTS AND DISCUSSION

(Optimized chromatogram):

Column: Phenomenex Luna C 18 (4.6×250 MM) 5 μ

Column temperature: 35°C

Wavelength: 285nm

Mobile phase ratio: Methanol: Water(85:15 v/v)

Flow rate: 1ml/min

Injection volume: 10µl

Run time: 7 minutes

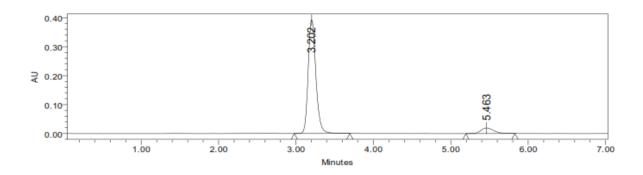


Figure no 2: Optimized Chromatogram (Standard)

S.No	Name	RT	Area	Height	USP Tailing	USP Plate Count	USP
1	Albendazole	3.202	2391746	39726	1.2	9028	D I 4 ¹
2	Ivermectin	5.463	194627	8497	1.1	7398	7.4

Optimized Chromatogram (Sample)

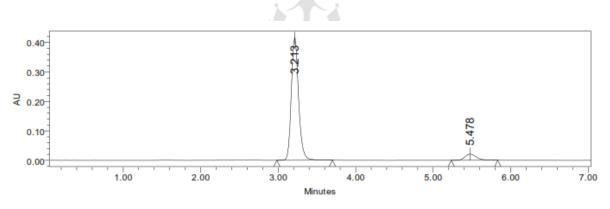


Figure no 3: Sample Optimized Chromatogram

S.No	Name	RT	Area	Height			USP Resolution
1	Albendazol	3.213	238164	391846	1.2	9472	7.0
2	Ivermectin	5.478	191057	8104	1.1	8936	7.5

System suitability:

S.No	Peak Name	RT	Area (µV*sec)	Height (µV)	USP Plate Count	USP Tailing
1	Albendazole	3.200	2391746	394171	8952	1.2
2	Albendazole	3.248	2391647	381946	9561	1.2
3	Albendazole	3.299	2381647	391746	6572	1.2
4	Albendazole	3.297	2385631	386562	6452	1.2
5	Albendazole	3.297	2385635	389164	7452	1.2
Mean			2387261			
Std.Dev.			4363.771			
%RSD			0.182794			

Table 3: Result of system suitability for Albendazole

Acceptance criteria:

- % RSD of five different sample solutions should not be more than 2.
- The % RSD obtained is within the limit, hence the method is suitable.

Table no 4: Results of system suitability for Ivermectin

S.No	Peak Name	RT	Area (µV*sec)	Height (µV)	USP Plate Count	USP Tailing
1	Ivermectin	5.413	198362	7917	5272	1.1
2	Ivermectin	5.484	197486	7486	6291	1.1
3	Ivermectin	5.405	198354	7859	6184	1.1
4	Ivermectin	5.405	197352	7926	7145	1.1
5	Ivermectin	5.409	198453	7946	6946	1.1
Mean			198001.4			
Std.Dev.			535.1774			
%RSD			0.27029			

Acceptance criteria:

- % RSD of five different sample solutions should not be more than 2.
- The % RSD obtained is within the limit, hence the method is suitable.

SPECIFICITY

Assay (Standard):

Table no 5: Peak results for assay standard of Albendazole

S.No	Name	RT	Area	Height	USP Tailing	USP Plate Count
1	Albendazole	3.211	2397162	397161	1.2	9472
2	Albendazole	3.222	2394721	389173	1.2	9745
3	Albendazole	3.254	2389461	391723	1.2	8917

Table no 6: Peak results for assay standard of Ivermectin

S.No	Name	RT	Area	Height	USP Tailing	USP Plate Count	Resolution
1	Ivermectin	5.414	198462	7811	1.1	8492	7.49
2	Ivermectin	5.453	198472	8193	1.1	8916	7.52
3	Ivermectin	5.424	198735	7972	1.1	9372	7.44

Assay (Sample):

HUMAN

Table no 7: Peak results for Assay sample of Albendazole

S.No	Name	RT	Area	Height	USP Tailing	USP Plate Count
1	Albendazole	3.297	2391741	381612	1.2	9472
2	Albendazole	3.294	2389166	391746	1.2	8927
3	Albendazole	3.295	2361731	381634	1.2	9017

Table no 8: Peak results for Assay sample of Ivermectin

S.No	Name	RT	Area	Height	USP Tailing	USP Plate Count	Resolution
1	Ivermectin	5.435	198641	8174	1.1	9284	7.18
2	Ivermectin	5.417	196547	8942	1.1	8974	7.44
3	Ivermectin	5.434	194027	7294	1.1	9017	7.38

% ASSAY=

Sample area weight of standard Dilution of sample Purity weight of the tablet

 _______X
 ______X
 ______X100

 Standard area Dilution of standard Weight of sample
 100
 Label claim

 =2380879/2393781*60/0.1731*99.8/100*1.5409/89.6*100

=98.6%

The % purity of Albendazole and Ivermectin in pharmaceutical dosage forms was found to be 98.6%

LINEARITY

Concentrati	Concentration	Average
on Level (%)	µg/ml	Peak Area
60	20	909889
80	40	1583641
100	60 MAN	2395378
120	80	3185089
140	100	3943725

Table no 9: Chromatographic Data for Linearity Study of Albendazole

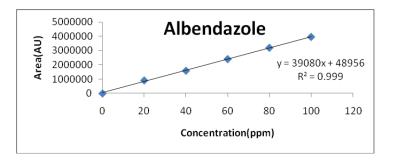
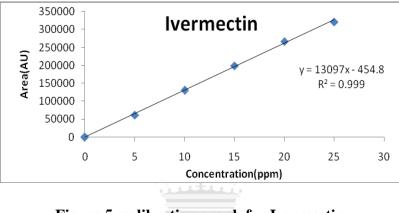



Figure 4: Calibration graph for Albendazole

Concentrati	Concentration	Average
on Level (%)	µg/ml	Peak Area
60	5	61953
80	10	130213
100	15	198697
120	20	267002
140	25	321658

Table no 10: Chromatographic Data for Linearity Study of Ivermectin

REPEATABILITY

Table no 11: Results of Repeatability for Albendazole:

S. No	Peak name	Retention	Area(µV*se	Height	USP Plate	USP
5. 110	r eak name	time	c)	(µV)	Count	Tailing
1	Albendazole	3.213	2397164	381741	8155	1.2
2	Albendazole	3.253	2391741	371742	9174	1.2
3	Albendazole	3.297	2371846	391746	7154	1.2
4	Albendazole	3.215	2361748	391847	9917	1.2
5	Albendazole	3.254	2371649	384622	9247	1.2
Mean			2378830			
Std.			14958			
dev			11750			
%RSD			0.628797			

Acceptance criteria:

- % RSD for the sample should be NMT 2.
- The % RSD for the standard solution is below 1, which is within the limits hence method is precise.

S. No	Deals nome	Retention	Area(µV*se	Height	USP Plate	USP
	Peak name	time	c)	(µV)	Count	Tailing
1	Ivermectin	5.441	198464	7291	6274	1.1
2	Ivermectin	5.442	193643	7219	6592	1.1
3	Ivermectin	5.409	196462	7194	6028	1.1
4	Ivermectin	5.520	194644	8174	6927	1.1
5	Ivermectin	5.424	198464	8653	5920	1.1
Mean			196335.4			
Std.			2100 101			
dev		17	2190.191			
%RSD			1.115536			
	1	H	UMAN	1		1

Intermediate precision:

Table no 13: Results of Intermediate precision Day 1 for Albendazole

G N			Area	Height		
S.No	Peak Name	RT	(µV*sec)	(μV)	USP Plate count	USP Tailing
1	Albendazole	3.211	2389572	395275	9375	1.2
2	Albendazole	3.211	2391847	392175	9275	1.2
3	Albendazole	3.210	2319472	312947	8265	1.2
4	Albendazole	3.212	2306842	310585	6254	1.2
5	Albendazole	3.211	2375972	310694	9028	1.2
6	Albendazole	3.297	2396746	358373	8928	1.2
Mean			2363409			
Std.Dev.			39730.83			
%RSD			1.681082			

Citation: Sneha Thakur et al. Ijppr.Human, 2023; Vol. 26 (2): 91-107.

Acceptance criteria:

• % RSD of six different sample solutions should not be more than 2.

			Area	Height		
S.No	Peak Name	RT	(µV*sec)	(µV)	USP Plate	USP Tailing
					count	
1	Ivermectin	5.411	197284	7194	8264	1.2
2	Ivermectin	5.410	197849	7294	9174	1.2
3	Ivermectin	5.420	196572	7147	9164	1.2
4	Ivermectin	5.423	195028	7927	9733	1.2
5	Ivermectin	5.419	199474	8238	9194	1.2
6	Ivermectin	5.409	197482	7638	8973	1.2
Mean			197281.5			
Std. Dev.			1466.354			
%RSD			0.74328			

Table no 14: Results of Intermediate precision Day 1 for Ivermectin

Acceptance criteria:

• % RSD of six different sample solutions should not be more than 2.

 Table no 15: Result of Intermediate precision Day 2 for Albendazole

S.No	Peak Name	RT	Area (µV*sec)	Height (µV)	USP Plate Count	USP Tailing
1	Albendazole	3.211	2389562	391741	9264	1.2
2	Albendazole	3.233	2381654	391047	9746	1.2
3	Albendazole	3.244	2381946	391748	9816	1.2
4	Albendazole	3.297	2391741	391746	9917	1.2
5	Albendazole	3.297	2386452	381641	9742	1.2
6	Albendazole	3.202	2374763	381645	9017	1.2
Mean			2384353			
Std.			6183.339			
Dev.			0100.007			
%RSD			0.25933			

Acceptance criteria:

• % RSD of six different sample solutions should not be more than 2.

			Area	Height		
S.No	Peak Name	RT	(µV*sec)	(µV)	USP Plate	USP
					Count	Tailing
1	Ivermectin	5.411	197486	7582	6272	1.1
2	Ivermectin	5.410	197486	7184	6174	1.1
3	Ivermectin	5.420	196746	7456	5184	1.1
4	Ivermectin	5.405	195862	7814	6194	1.1
5	Ivermectin	5.409	196582	7194	6292	1.1
6	Ivermectin	5.463	198463	7745	6191	1.1
Mean			197104.2			
Std. Dev.			903.542			
%RSD			0.458408	177		

Table no 16: Results of Intermediate precision Day 2 for Ivermectin

Acceptance criteria:

HUMAN

• % RSD of six different sample solutions should not be more than 2.

ACCURACY:

Table no 17: The accuracy results for Albendazole

%Concentration (at specification Level)	Area	Amount Added (ppm)	Amount Found (ppm)	% Recovery	Mean Recovery
50%	1217218	30	29.4	99.1	
100%	2397141	60	59.5	99.6	99.5
150%	3514547	90	89.7	99.8	

Acceptance Criteria:

• The percentage recovery was found to be within the limit (98-102%).

The results obtained for recovery at 50%, 100%, and 150% are within the limits. Hence the method is accurate¹³⁻¹⁴.

%Concentration (at specification Level)	Area	Amount Added (ppm)	Amount Found (ppm)	% Recovery	Mean Recovery
50%	98598.67	7.5	7.49	99.9	
100%	198359.7	15	15.0	100	99.6
150%	291512.3	22.5	22.48	99	

Table no 18: The accuracy results for Ivermectin

Acceptance Criteria:

• The percentage recovery was found to be within the limit (98-102%).

The results obtained for recovery at 50%, 100%, and 150% are within the limits. Hence the method is accurate.

LIMIT OF DETECTION

The detection limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be detected but not necessarily quantitated as an exact value.

$$LOD = 3.3 \times \sigma / s$$

Where

 σ = Standard deviation of the response

S =Slope of the calibration curve

Albendazole:

Result:

=3.3 imes 39761/39080

 $= 3.3 \mu g / ml$

Citation: Sneha Thakur et al. Ijppr.Human, 2023; Vol. 26 (2): 91-107.

Ivermectin:

Result:

=3.3 × 5008/13097

 $=1.2 \mu g/ml$

Quantitaion limit

The quantitation limit of an individual analytical procedure is the lowest amount of analyte in a sample which can be quantitatively determined.

LOQ=10×σ/S

Where

 σ =Standard deviation of the response

S =Slope of the calibration curve

Albendazole:

Result:

=10×39761/39080

 $=10.1 \mu g / ml$

Ivermectin:

Result:

=10×5008/13097

 $=3.8 \mu g/ml$

ROBUSTNESS

Parameter used for sample	Peak Area	Retention Time	Theoretical	Tailing factor
analysis			plates	
Actual Flow rate of 1.0mL/min	2391746	3.202	9028	1.2
Less Flow rate of 0.9mL/min	2371831	3.639	7381	1.2
More Flow rate of 1.1mL/min	2218319	2.859	9311	1.1
Less organic phase (about 5 % decrease in organic phase)	2294821	3.460	7462	1.2
More organic phase (about 5 % Increase in organic phase)	2394811	3.022	6817	1.1

Table no 19: Result for Robustness of Albendazole

Acceptance criteria:

The tailing factor should be less than 2.0 and the number of theoretical plates (N) should be more than 2000.

Table no 20: Results for Robustness of Ivermectin

Parameter used for sample	Peak Area	Retention Time	Theoretical	Tailing factor
Actual Flow rate of 1.1mL/min	194627	5.463	7398	1.1
Less Flow rate of 0.9mL/min	183738	6.250	6883	1.1
More Flow rate of 0.8mL/min	198373	4.863	9917	1.2
Less organic phase (about 5 % decrease in organic	178471	6.196	8372	1.1
phase)				
More organic phase				
(about 5 % Increase in organic	189462	5.010	7716	1.2
phase)				

Acceptance criteria:

The tailing factor should be less than 2.0 and the number of theoretical plates (N) should be more than 2000.

Citation: Sneha Thakur et al. Ijppr.Human, 2023; Vol. 26 (2): 91-107.

CONCLUSION

The developed HPLC method offers several advantages such as rapid, usage of simple mobile phase and easy sample preparation steps, Further, improved sensitivity makes it specific and reliable for its intended use. Hence, this method can be applied to the analysis of pure drug and pharmaceutical dosage forms. From the present study, it can be concluded that the proposed method is simple, sensitive, precise, specific, accurate, and reproducible. The result of validation parameters demonstrated that the analytical procedure is suitable for its intended purpose.

ACKNOWLEDGEMENT

The Authors are thankful to the Management and Principal, Department of Pharmacy, St. Pauls College of Pharmacy, Turkayamjal, for extending support to carry out the research work finally, the authors express their gratitude to the Sura Labs, Dilsukhnagar, Hyderabad, for providing research equipment and facilities.

REFERENCES:

1. Anil Waldiaa , Shubash Gupta Validated liquid chromatographic method for simultaneous estimation of albendazole and ivermectin in tablet dosage form;2007:15,617-620

2. Patel Asmita K.*, Dr. Joshi Hirak V,- Development And Validation Of Stability Indicating Rp-Hplc Method For Estimation Of Ivermectin And Albendazole In Pharmaceutical Dosage Indian Journal Of Drugs, 2015, 3(3), 57-70

3. Shethi PD. HPLC- Quantitative analysis of pharmaceutical formulations. 1st Ed. Newdelhi: CBS publisher & Distributors; 2001:8-10, 101-103.

4. Kasture AV, Mahadik KR, Wadodkar SG, More HN. Pharmaceutical Analysis: Vol-II. 8th Ed. Pune: Nirali Prakashan: 2002:48-57.

5. Prajapati GA. Method development and validation for simultaneous estimation of Hypertensive drugs RP-HPLC. M.phar Thesis, Maliba Pharmacy college, Gujarat Technological University, Gujarat, India, 2011: 7-28.

6. Gabor S. HPLC in pharmaceutical Analysis: Vol. I. 1st Ed. London: CRC Press; 1990:101-173.

7. Jeffery GH, Bassett J. Vogel's textbook of quantitative Chemical Analysis. 5th Ed. New York: John Wiley & Sons Inc; 1991:217-235.

8. Hobart HW. Merritt LL, John AD. Instrumental Methods of Analysis. 7th Ed. New delhi: CBS Publisher; 1988:580-610.

 Sharma BK. Instrumental Method of Chemical Analysis. 20th Ed Meerut: Goel publishing House; 2001:54-83.

10. Ashutoshkar. Pharmaceutical Drug Analysis 2nd Ed. New Delhi: New Age International Publisher; 2005:455-466.

11. Ahuja S, Michael WD. Hand book of Pharmaceutical Analysis by HPLC. 1st Ed London; Elsevier Academic Press; 2005:44-54.

12. Snyder LR, Kirkland JL, Glajch JL. Practical HPLC Method Development. 3rd Ed. New York: Wiley; 1988-227.

13. Sandhya Bhimrao Lahane and Dr. U. A. Deokate, Development And Validated UV Spectrophotometric Method For Estimation Of Albendazole In Tablet Dosage Form, World Journal Of Pharmaceutical Research, Volume 3, Issue 4, 1461-1467.

Citation: Sneha Thakur et al. Ijppr.Human, 2023; Vol. 26 (2): 91-107.

14. International Conference on Harmonization (ICH) of Technical Requirements for the Registration of Pharmaceuticals for Human Use, Validation of analytical procedures: Methodology, Q2B, Geneva (1996).

Citation: Sneha Thakur et al. Ijppr.Human, 2023; Vol. 26 (2): 91-107.