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ABSTRACT  

This article proposes the use of intranasal rifampin as a means 

to improve protein homeostasis and disaggregate misfolded 

proteins in the age-related neurodegenerative proteinopathies. 

Alzheimer’s disease, Parkinson’s disease, multi-system 

atrophy, Lewy body dementia, frontotemporal dementia, 

amyotrophic lateral sclerosis and Huntington’s disease are all, 

at the core, proteinopathies.  Although these diseases varying 

greatly in the specific disease-associated proteins, anatomic 

sites of the abnormal protein deposition and clinical 

presentations, what they have in common is disruption of 

normal “housekeeping” functions related to protein 

homeostasis, proteostasis.  The prospect of pharmacologically 

augmenting autophagic capacity with a known drug repurposed 

to improve proteostasis is attractive; to accomplish these ends 

with an inexpensive drug with relative ease of delivery adds to 

the attractiveness. Rifampin can be delivered to the brain via 

the intranasal route.  Rifampin has been used for decades 

primarily against mycobacterial infection; it has been given 

with intravenous, oral, intrathecal and topical routes including 

as eyedrops and nasal spray. Rifampin disaggregates toxic 

oligomers in vitro; given intranasally, rifampin improves 

memory and clears pathologic proteins in animal models of the 

proteinopathies. Rifampin acts as both a gatekeeper and a 

housekeeper against the abnormal proteins of these diseases.  

This article suggests the merit of a clinical trial with intranasal 

rifampin to boost protein homeostasis in the most common age-

related neurodegenerative proteinopathy, Alzheimer’s disease. 

The primary outcome of such a trial is change in risk of 

Alzheimer’s pathology as measured by plasma-based amyloid 

peptide 42/40 testing pretreatment and follow-up testing after 6 

months of intranasal rifampin. 
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INTRODUCTION 

The age-related neurodegenerative diseases include Alzheimer’s disease (AD), Parkinson’s 

disease (PD), Lewy body dementia (LBD), Multiple System Atrophy (MSA), Huntington 

disease (HD) and amyotrophic lateral sclerosis/frontotemporal dementia spectrum (ALS-

FTD).  While these are all distinct clinical and pathologic entities, they share a cardinal 

feature: loss of the disease-related proteins’ normal physiologic function with a change into 

accumulated, misfolded and neurotoxic proteins [1,2].   

Putatively, the associated proteins are amyloid-β and tau for AD, synuclein for PD, LBD and 

MSA, huntingtin for HD and transactive DNA-binding protein 43 (TDP-43) for ALS-FTD 

[3].  Collectively these diseases are age-related neurodegenerative proteinopathies, or protein 

misfolding neurodegenerative diseases. The result is disease-specific pathologic protein 

aggregation in the central nervous system with neuronal loss in disease-specific anatomical 

locations [4]. 

Protein homeostasis or "proteostasis" represents the regulatory process resulting in normal 

intracellular equilibrium of functional and "healthy" proteins; this includes protein synthesis, 

folding and degradation.  Essential for cell viability and function, the proteostasis 

“housekeeping” function removes damaged, misfolded, and aggregated proteins via the 

ubiquitin-proteasome system and the autophagy-lysosome pathway [2].  While the removal of 

toxic misfolded proteins is critical for all cells, it is particularly important in post-mitotic 

neurons [5].  Post-mitotic neurons cannot utilize mitosis as a means to dilute toxic proteins 

which makes them uniquely vulnerable to impaired toxic protein removal [6], this 

vulnerability is aggravated with advancing age [7,8]. 

A mainstay of proteostasis is autophagy, the phylogenetically conserved housekeeping 

function critical for removal of toxic proteins in all cell types, including neurons. Moreover, 

astrocytes and subtypes of microglia play important roles in the phagocytosis and eventual 

autophagic elimination of neurotoxic proteins [3].  Autophagy ensures a basic supply of 

recycled amino acids, sugars, lipids and other products of autophagic catabolism [9]. 

Any strategy to lessen these proteinopathies by boosting autophagy would be a welcome 

addition to offset the largely ineffective interventions currently available [10,11].  Rifampin 

(PubChem CID: 6918244) is a well-known antibiotic primarily used to treat mycobacterial 

diseases such as tuberculosis and leprosy [12].  An observation was made 30 years ago 
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wherein elderly leprosy patients seemed to be protected against Alzheimer’s disease; 

rifampin was the therapeutic agent used to treat their leprosy [13,14]. The remainder of this 

paper will discuss rifampin and its role in the clearance of neurotoxic proteins associated with 

age-related neurodegenerative diseases.   

Rifampin 

In 1957, a newly discovered bacterium - Nocardia mediterranei, was isolated by Piero Sensi 

and Maria Timbal [12]. Metabolites from this bacterium produced new molecules with 

antibiotic properties; one of which was rifampin.  By 1968, it was clear that rifampin had an 

important role in therapy for mycobacterial infections [12].  Rifampin is delivered orally 

[15.16], intravenously [16], topically [17], by inhalation for pulmonary mycobacterial 

infection [18,19], as eye drops [20] and as nose drops [21,22].   

Rifampin is readily absorbed from the gastrointestinal tract (90%) Rifampicin reaches 

maximal serum concentration in 1–4 h after application and its plasma half-time is 2–5 h 

[23].  Intravenously given, rifampin has the same distribution as the oral route.  Eighty-nine 

percent of rifampin is bound to plasma proteins; this accounts for both the well-known first 

pass metabolism and toxicity for the liver [24]. 

Notwithstanding the known hepatic risk, rifampin has been given in much higher doses for 

rifampin-sensitive tuberculosis [25,26] and particularly for tuberculous meningitis [16].  The 

rifampin standard-of-care oral dose is 10 mg/kg with increase dosage ranging to 35 mg/kg 

and intravenous dosing at 20 mg/kg.  Treating tuberculous meningitis, the minimal inhibitory 

concentration (MIC) for rifampin in the cerebral spinal fluid (CSF) is >1 mg/L.  Standard-of-

care dosing does not achieve this MIC; however, higher oral and intravenous dosing both 

exceed this therapeutic level [16]. 

Aside from its central role in treating mycobacterial disease, rifampin is found to impart brain 

protective properties; this extends to neurodegenerative diseases AD and PD as well as 

meningitis, stroke and optic nerve injury [27].  In PD, rifampicin inhibits alpha-synuclein 

fibrillation and disaggregates existing fibrils [28]; in AD, rifampin inhibits amyloid 

oligomerization [29] and enhances clearance of amyloid in an animal model [30]. 
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Clinical trials targeting amyloid in patients already having reduced cognitive function due to 

AD show that the therapeutic interventions at that juncture have little effect on disease course 

[31-33]; this suggests that preventive therapy should start prior to clinical symptoms. 

Interventional efforts with rifampin failed in cohorts of mild and moderate AD individuals 

[34)]. Conversely, when rifampin was used in preclinical and prodromal AD, it showed 

preventative effects [35]. This clarifies the need for novel plasma biomarkers identifying AD 

risk that then can be used in clinical trials of individuals with prodromal AD [36]. Though 

attractive as repurposed rifampin may be for AD clinical trials, as mentioned, it is notably 

hepatotoxic [37] and has multiple adverse drug-drug interactions [38]. 

What is the evidence that repurposed rifampin could aid in the fight against the age-related 

neurodegenerative proteinopathies (Figure 1)? 

Rifampin in in vitro studies of age-related neurodegenerative proteinopathies 

As cited, rifampin mediates synuclein fibrillation and promotes disaggregation of already 

formed synuclein fibrils [28] suggesting a therapeutic application for the synucleinopathies of 

PD, DLB and MSA.   In a study of several candidate compounds tested in cell-free 

conditions, rifampin showed the strongest inhibitory activity against oligomer formation of 

amyloid, tau and synuclein [29]. Remarkably, the activity of rifampin against aggregated and 

neurotoxic amyloid has been known for nearly thirty years [39].  Moreover, rifampin inhibits 

microglial inflammation and promotes neuronal viability [40]; this reduced microglial 

inflammation was also found with the use of rifampin and its derivative, rifampin quinone 

against inflammatory responses induced by synuclein aggregates in cell culture [41]. 

Rifampin (systemic) in animal models of neurodegerative proteinopathies 

Rifampin reduces abnormal aggregated synuclein in a transgenic mouse model of MSA 

which is accompanied by reduced neurodegeneration [42]. Rifampin clears amyloid in an AD 

mouse model and this enhanced clearance is facilitated by efflux upregulation [30]. 

Intraperitoneal injection of rifampin ameliorated cognitive impairment of an AD mouse 

model and protected the hippocampal neurons via enhanced autophagy [43]. Rifampin-loaded 

nanoparticles improved spatial learning and memory of AD mice paralleling reduced amyloid 

deposition [44].  A broad defensive role of rifampin in animal models of experimental 

dementia is reported in a rat-model of aluminum chloride-induced dementia wherein a 
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recuperative response was seen with rifampin that was associated with improved memory, 

anti-oxidative, anti-inflammatory and amyloid lowering effects [45].   

Rifampin (intranasal) in animal models of neurodegerative proteinopathies 

Due to the previously noted rifampin-induced liver injury via systemic administration the 

consideration of internasal delivery of rifampin is attractive as it avoids hepatic first pass 

metabolism and offers direct CNS bioavailability [46].  Umeda and associates have shown 

the advantage of intranasal rifampin over oral delivery in a mouse AD model; the benefit 

included improved memory and reduction in AD pathology including amyloid oligomer 

accumulation, abnormal tau phosphorylation and synapse loss [47].  They expanded their 

work with nasal rifampin to a mouse model of DLB showing improved cognition and reduced 

synuclein oligomers [48].  In another animal study, intranasal rifampin (combined with 

resveratrol), lessened amyloid, tau and synuclein pathology and significantly improved 

cognition [49].  In yet another study by Umeda, nasal rifampin was found to inhibit tau 

oligomer propagation in an animal model of AD taupathy.  This study was most interesting in 

that the tau inoculum was sourced from the brain of a human AD patient [50].  The range of 

intranasal rifampin benefit across the neurodegenerative proteinopathies is evidenced in a 

successful animal study using genetic animal models of FTD and ALS, hexanucleotide repeat 

expansion-related neuropathy [51].   

Rifampin (systemic) in human trials of neurodegerative proteinopathies 

A Canadian rifampin clinical trial was published in 2004; it included one hundred one 

participants in two groups: probable AD and mild to moderate AD.  This trial showed those 

taking oral rifampin (along with doxycycline) exhibited less decline in a standardized AD 

assessment (SADAScog) than placebo [34].  Unfortunately, these data could not be replicated 

[52].  Addressing the dose and duration of the unsuccessful study, a trial of oral rifampin 

given at a dose of at least 450 mg/day for at least one year significantly improved both 

metabolic function and cognitive status suggesting that the previous unsuccessful trial with 

rifampin was due to starting too late with too low a dose for too short of an interval [53]. 
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Rifampin (intranasal) in human trials of neurodegerative proteinopathies 

The purpose of this article was to make an argument for clinical trials utilizing intranasal 

delivery of rifampin.  Rifampin’s significant brain neuroprotection along with the cerebral 

anti-inflammatory effects should prompt a clinical trial due to the overwhelming untoward 

demographics presented by the age-related neurodegenerative proteinopathies [54].  Ideally, 

this repurposed use of rifampin would be employed in those identified to be at high risk for 

neurodegenerative proteinopathies.  For example, participants could include individuals 

identified as high risk for AD via positive amyloid-PET scan or via the plasma-based 

PrecivityADTM [55].  Similarly, participants could be identified with the nascent blood-based 

biomarkers for PD [56] and HD [57]. 

Intranasal Rifampin Delivery to the Brain 

Employing intranasal delivery, notwithstanding its proximal location to the brain, still 

presents challenges and a review of pertinent anatomy is warranted.  The nasal cavity is 

divided into halves by the nasal septum; each half has three regions; nasal vestibule, 

respiratory region and olfactory region. The nasal vestibule is the entrance to the nose and the 

respiratory region which contains nasal turbinates that warm and humidify incoming air.  The 

olfactory region is situated at the roof of the nasal cavity and a full 7 cm from the nostrils.  

This uppermost region is the target area for olfactory delivery.  The olfactory epithelium lines 

the olfactory region and contains elements of the olfactory nerve [58]. The respective areas of 

the nasal cavity are innervated by the olfactory nerve (CN I) and the trigeminal nerve (CN 

V). The olfactory neurons project through the surrounding olfactory epithelium and the 

cribriform plate then synapse at the olfactory bulb in the brain.   While the trigeminal 

neuronal endings are not directly exposed to the respiratory epithelium of the nasal cavity, 

olfactory neurons are within the olfactory epithelium and reach directly into the nasal cavity.  

This anatomic difference is the reason why the smaller olfactory nerve, along with its 

perineuronal spaces, is the primary route for intranasal transport of substances to the brain 

[59].   

Rifampin appears to have a pleiotropic effect on the main gatekeeper of substance transport, 

the permeability glycoprotein, P-gp.   

A primary difficulty in treating CNS disease is the poor brain penetration of systemically 

administered therapeutic agents.  This limitation is due to the makeup of the blood brain 
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barrier (BBB); consisting of endothelial cells with tight junctions, it limits substrate 

permeability [60].  This anatomic cerebral protection from unwanted substrates is augmented 

by the presence of P-gp and its action as an efflux pump.  In the setting of the BBB, rifampin 

is a strong inducer of P-gp and, as such, enhances the clearance of amyloid from the brain 

[30].   

P-gp is also expressed in normal human nasal mucosa localized to both the olfactory 

epithelium and the endothelial cells surrounding the olfactory bulb - the nose-brain 

intersection. In this setting rifampin inhibits P-gp-mediated efflux and does so in a dose 

dependent manner facilitating CNS exposure [61]. 

There are increasing numbers of CNS acting pharmacologic agents that are delivered 

intranasally.  These include treatments for seizure, migraine, major depressive disorder, 

subarachnoid hemorrhage and hypoglycemia.  The complex structure of the nose and need to 

deliver the treatment to the olfactory epithelium has presented challenges [62].  Assorted 

strategies have been developed to address the need to deliver the drug to the olfactory 

epithelium.  This includes nebulizers, gas propellants, excipients and breath powered devices 

[63-66].   

“Bi-directional” Intranasal Delivery to the Brain 

Bi-directional intranasal delivery is a simple, effective, physiologic and no-cost alternative to 

the other intranasal delivery methods [67-71].  With normal bilateral inhalation, a metered 

pulse of spray is delivered to one or both nostrils.  In contrast, with bi-directional delivery, 

the metered pulse flows from one nostril to the end of the nasopharynx, turns around into the 

contralateral nasal cavity and exits through that contralateral nostril.  This is accomplished by 

occluding the side that received the pulse and “blowing” [72].  Moreover, nasal dilation with 

phenylephrine aids delivery to the olfactory region - with unilateral delivery, dilation 

enhanced olfactory deposition by a factor of 2.2 and with bi-directional delivery dilation 

increased olfactory deposition 4-fold [73].  

CONCLUSION 

This article proposes the use of a well-known antibiotic drug, rifampin, repurposed to act 

against aberrant protein aggregations that are the pathologic representations of Alzheimer’s 
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disease, Parkinson disease, Lewy body dementia, multiple system atrophy, Huntington 

disease and amyotrophic lateral sclerosis/frontotemporal dementia spectrum.   

What are the actions of rifampin upon the aberrant proteins of these proteinopathies? 

Parsimoniously, rifampin is a gatekeeper and a housekeeper.  Intranasal rifampin ushers itself 

into the CNS, disaggregates toxic proteins and escorts those proteins out.  Rifampin is 

inexpensive, the standard rifampin metered nose spray prepared by a compounding pharmacy 

costs about $145 dollars for 30ml [74]. Using 4 mg (1 mg/0.1ml) daily in a bi-directional 

manner, the preparation contains more than two months of daily rifampin treatment.  Due to 

the current absence of disease modifying therapy for the age-related neurodegenerative 

proteinopathies, rifampin represents a reasonable, inexpensive therapeutic prospect for 

intervention against this diverse set of diseases.    

Abbreviations: AD- Alzheimer’s disease, PD- Parkinson’s disease, LBD- Lewy body 

dementia, MSA- Multiple System Atrophy, HD- Huntington disease, ALS-FTD- amyotrophic 

lateral sclerosis/frontotemporal dementia spectrum, BBB- blood brain barrier, P-gp- 

permeability glycoprotein, TDP-43- transactive DNA-binding protein 43, CSF- cerebral 

spinal fluid, CN I- cranial nerve one (olfactory), CN V- cranial nerve five (trigeminal), 

SADAScog- Standardized Alzheimer's Disease Assessment Scale cognitive subscale, MIC- 

minimal inhibitory concentration. 
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