
International Journal of Pharmacy & Pharmaceutical Research An official Publication of Human Journals



Human Journals **Review Article** November 2023 Vol.:28. Issue:4 © All rights are reserved by Maryam Zebhi et al.

# **Review on NSAID Metal Complexes: Synthesis, Characterization** and **Biological** Activity



Narayanaguda, Hyderabad-500027, Telangana, India.

| Submitted: | 22 October 2023  |
|------------|------------------|
| Accepted:  | 27 October 2023  |
| Published: | 30 November 2023 |





ijppr.humanjournals.com

**Keywords**: NSAIDs, metal complexes, anticancer, antimicrobial, analgesic, anti-inflammatory

### ABSTRACT

Metal complexes consist of a central metal atom or ion and surrounding molecules, which are called ligands. NSAIDs are a class of compounds with anti-inflammatory properties used to treat pain or fever. NSAIDs properties can be strongly improved when included in complexes using their compositional N and O donor atoms, which facilitate their coordination with metal ions. It is known that metal complexes, once bound to organic drugs, can enhance the drugs' activities, such biological as anticancer. antimicrobial, analgesic, and anti-inflammatory. The aim of the study is to achieve a metal-drug complex which can be less toxic and cause lower side effects with enhanced biological activity than the parent drug. From the systematic review study, it is observed that the most practised methods of characterization of metal complexes are: Elemental analyses, FTIR, UV-Visible spectroscopy, <sup>1</sup>H and <sup>13</sup>C NMR, X-ray diffraction, Melting point determination, Molar conductance and Mass spectroscopy. The widely reported biological activity of drug metal complexes includes Anti-inflammatory activity, Analgesic, Antimicrobial activity, Antioxidant activity and Anti-cancer activity. We can conclude that the complexation of NSAIDs with metal can have better biological activity when compared to the parent drug.

#### **INTRODUCTION**

Metal complexes consist of a central metal atom or ion which is called the coordination centre and a surrounding array of bound molecules, which are called ligands <sup>[1]</sup>. A ligand is an ion or molecule, which donates a pair of electrons to the central metal atom or ion to form a coordination centre. Ligands can be anions, cations, and neutral molecules <sup>[2]</sup>.

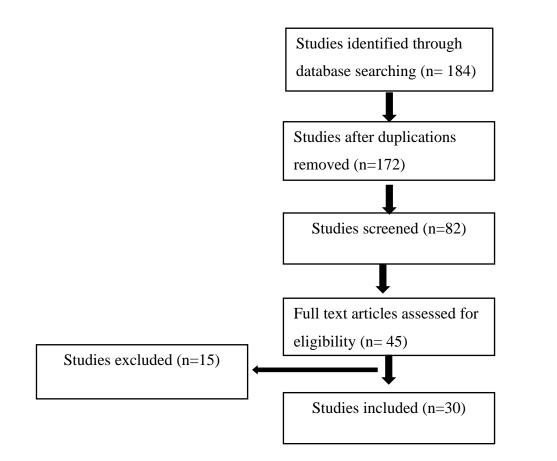
The drug binds to the metal based on the coordination number, hence, the metal complexes can be classified into different types- (i) Binary complex: A binary complex is a noncovalent complex of two molecules that are bound together. E.g.:  $[Zn(mef)_2]$ ,  $[Zn(dicl)_2]$ ,  $[Cu (Dopa)_2]$  (ii) Ternary complex: A ternary complex is a protein complex containing three different molecules that are bound together. E.g.:  $[Mn(mef)_2(imi)_2(EtOH)_2]$ ,  $[Ni (metf)(en)_2]$   $Cl_2$ <sup>[3-4]</sup>.

Complexes are widely used as therapeutic compounds to treat several human diseases such as carcinomas, lymphomas, infection control, diabetes, analgesic, anti-inflammatory and neurological disorders <sup>[5]</sup>. They are also used to improve the solubility of several pharmaceutical ingredients and subsequently the bioavailability of poorly water-soluble drugs <sup>[6]</sup>. Transition metal complexes are important in catalysis, material synthesis, photochemistry, and biological systems <sup>[7]</sup>. It is also a common strategy to improve the therapeutic potency and/or to reduce the toxicity of drug molecules <sup>[8]</sup>.

Non-steroidal anti-inflammatory drugs (NSAIDs) are medicines that are widely used to relieve pain, reduce inflammation, and bring down a high temperature. NSAIDs are useful for treating muscle pain, dysmenorrhea, arthritic conditions, pyrexia, gout, and migraines, and are used as opioid-sparing agents in certain acute trauma cases <sup>[9]</sup>. All drugs grouped in this class have analgesic, antipyretic and anti-inflammatory actions in different measures.

NSAIDs cause various adverse effects like gastrointestinal effects that include nausea, anorexia, gastric irritation, erosions, peptic ulceration, gastric bleeding/perforation, renal effects that include Na+ and water retention, chronic renal failure, nephropathy, CVS effects like rise in BP, risk of myocardial infarction (especially with COX-2 inhibitors), CNS effects like headache, mental confusion, vertigo, behavioural disturbances, seizure precipitation, Haematological effects like bleeding, thrombocytopenia, haemolytic anaemia, agranulocytosis which can possibly be reduced by complexation of these drugs with metal complexes <sup>[10]</sup>.

Complexation shows significant effects that can limit the adverse effects of drugs. For example; the zinc–aceclofenac complex induced fewer ulcers in rat stomachs compared to the parent drug. This suggests that the complexation of NSAIDs with zinc may be an effective strategy for limiting the adverse gastrointestinal side effects of these agents <sup>[11]</sup>. Complexation also enhances the anti-inflammatory activity of drugs. E.g.: The anti-inflammatory properties of Ni (II), Zn (II) and Co (II) metal (diclofenac) complexes bearing Schiff base ligands derived from salicylaldehyde and glycine. Oral administration of the complexes reduced inflammatory oedema in rats challenged by carrageenan, with greater potency compared to the NSAID diclofenac <sup>[12]</sup>.


Many transition metal complexes act as extremely good anticancer agents and show their biological activity by stopping the replication of DNA, blocking the division of cancer cells and resulting in cell death <sup>[13]</sup>. The transition metal complexes frequently possess superior lipophilicity profiles compared to the free ligands, allowing them to more easily pass through cell membranes to exert their biological effects. For example, from antibiotic drug discovery, a Pt (II) tetracycline complex was six times more potent against *E. coli* compared to the free ligand <sup>[14]</sup>.

#### Methodology:

Data sources and search strategy:

The search strategy refers to the methods employed to conduct methodologically sound research and might include information such as the data sources used and the specific terms applied to indistinct databases. The search locates articles relevant to answering the previously defined research question.

A comprehensive literature search was conducted from 2005 to 2023 using Google Scholar (https://scholor.google.co.uk/) Pub med (https://pubmed.ncbi.nlm.nih.gov), other databases and many journals for studies investigating the synthesis, characterization, and evaluation of NSAID metal complexes in pain and inflammation models. We first pooled results from different databases, and journals, performed the duplication removal step and then conducted title and abstract screening followed by full-text screening.



General Procedure for Synthesis of NSAID Metal Complexes: Equimolar metal salts dissolved in water were added to the ligands so that the ratio n (*metal*): n (*ligand*) of monovalent, divalent, and trivalent ions used was 1: 1, 1: 2 and 1: 3, respectively, in each case and immediate precipitation occurred. Then the solid complexes were isolated by filtration, washed until being free of chlorides with the corresponding solvent (methanol or water), and finally dried at room temperature <sup>[14]</sup>.

General Methods Used for Characterization of NSAID Metal Complexes: Elemental analysis (C, H, N), FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, DEPT-135 NMR Spectroscopy, Electronic spectra (SEM), Ultraviolet-Visible spectra, XRPD, Mass spectrum using LC-MS Spectrometer, Magnetic moments, Molar ratio measurements, and Molar conductance tests. The physicochemical and biological evaluation of drug-metal complexes is assayed in the below table.

Physicochemical and biological evaluation of drug-metal complexes:

| S. | Title                                                                                                                                                                          | Primary                                           | Comple                                              | Type of            | Physicochemic                                                                                                                                                     | Biological                                                                                                          | Conclusion                                                                                                                                                                                                   | Ref |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| No |                                                                                                                                                                                | ligand/<br>(NSAIDS)<br>and<br>Secondary<br>ligand | xing<br>agent                                       | Complex            | al<br>Characterisatio<br>n                                                                                                                                        | Activity                                                                                                            | Concrusion                                                                                                                                                                                                   |     |
| 1  | Synthesis,<br>characterization,<br>and antibacterial<br>study of Co (II)<br>and Cu (II)<br>complexes of<br>mixed ligands of<br>piperaquine and<br>diclofenac                   | Piperaquine<br>and<br>Diclofenac<br>-             | Cu (II)<br>Co (II)                                  | Binary<br>complex  | <sup>1</sup> H NMR, <sup>13</sup> C<br>NMR, DEPT-<br>135 NMR<br>Spectroscopy,<br>Elemental<br>Analyses,<br>Ultraviolet-<br>Visible spectra,<br>FTIR, XRPD         | Anti-<br>inflammatory<br>activity,<br>Antioxidant<br>Assay,<br>Antibacterial<br>activity                            | -The in vitro<br>antioxidant and<br>antibacterial assays<br>portray the<br>complexes with<br>higher antioxidant<br>and bactericidal<br>efficacy than the<br>parent ligands and<br>some renowned<br>standards | 15  |
| 2  | Zinc (II)<br>complexes<br>derived from<br>ibuprofen Schiff<br>base ligands:<br>synthesis,<br>characterization,<br>and biological<br>activity                                   | Ibuprofen<br>Schiff base                          | Zn (II)                                             | Ternary<br>complex | Elemental<br>analyses (C, H,<br>N), FT-IR,<br>electronic<br>spectra,<br>magnetic<br>moments,<br>molar ratio<br>measurements,<br>and molar<br>conductance<br>tests | Antimicrobial<br>activity-<br>Antibacterial<br>activity, Anti-<br>fungal<br>activity, and<br>Anticancer<br>activity | -Promising<br>bioactivities against<br>the tested<br>pathogens.<br>-Inhibited cell<br>proliferation.                                                                                                         | 16  |
| 3  | Synthesis,<br>Characterization,<br>In-Vitro Anti-<br>Inflammatory,<br>And<br>Antimicrobial<br>Screening of<br>Metal (II) Mixed<br>Diclofenac and<br>Acetaminophen<br>Complexes | Diclofenac<br>and<br>Acetaminop<br>hen<br>-       | Mn (II)<br>Co (II)<br>Ni (II)<br>Cu (II)<br>Zn (II) | Binary<br>complex  | Ultraviolet-<br>visible spectra,<br>FTIR, XRPD                                                                                                                    | In-vitro anti-<br>inflammatory<br>activity,<br>antimicrobial<br>screening                                           | -Moderate anti-<br>inflammatory<br>activity compared<br>to the diclofenac<br>potassium salt (test<br>standard.<br>-Promising<br>antidotes in metal<br>chemotherapy.                                          | 17  |
| 4  | Transition metal<br>complexes of<br>Naproxen:<br>Synthesis,<br>Characterization,<br>Forced<br>Degradation<br>studies and<br>Analytical<br>method<br>verification               | Naproxen<br>-                                     | Co (II)<br>Cu (II)<br>Zn (II)<br>Fe (III)           | Binary<br>complex  | Elemental<br>analyses, IR<br>spectra,<br>Thermal<br>analysis,<br>electronic<br>photography<br>(SEM), and<br>Magnetic<br>properties<br>(NMR).                      | Anti-<br>inflammatory<br>activity                                                                                   | -The metal<br>derivatives of<br>Naproxen can be<br>more potent anti-<br>inflammatory<br>agents with longer<br>half-life and longer<br>shelf life compared<br>to Naproxen.                                    | 18  |

| 5  | Synthesis and<br>Characterization<br>of Cu (II)<br>Complexes of<br>Salicylate<br>Ligands                                              | Acetylsalic<br>ylic acid<br>-                                                       | Cu (II)                                              | Binary<br>complex  | Elemental<br>analyses, FTIR,<br>electronic<br>photography<br>(SEM), and H-<br>NMR.                     | -                                                                                   | The spectra of the<br>ligands and the<br>complexes formed<br>proved that new<br>products were<br>formed and are<br>stable.                                                                                                                                 | 19 |
|----|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6  | Synthesis,<br>Characterisation<br>and Docking<br>Studies of Metal<br>(II) Complexes of<br>Anti-<br>inflammatory<br>Drug Celecoxib     | Celecoxib<br>Schiff base                                                            | Cu (II)<br>Co (II)<br>Ni (II)                        | Ternary<br>complex | Molar<br>conductance<br>test, FTIR,<br>UV–visible<br>spectrophotome<br>ter.                            | -                                                                                   | The nickel metal<br>complex of<br>Celecoxib is most<br>active against the<br>COX II enzyme.                                                                                                                                                                | 20 |
| 7  | Synthesis,<br>characterization,<br>docking and<br>biological studies<br>of M(II) (M= Mg,<br>Ca, Sr) Piroxicam<br>complexes            | Piroxicam<br>-                                                                      | Mg (II)<br>Ca (II)<br>Sr (II)                        | Binary<br>complex  | UV Vis, IR,<br><sup>1</sup> H NMR, <sup>13</sup> C<br>NMR,<br>conductance,<br>SEM-EDX,<br>XRD and TGA. | Antioxidant,<br>Anti-<br>inflammatory,<br>Analgesic, and<br>Anxiolytic<br>activity. | -Complexes<br>possess higher<br>biological potential<br>with lower toxicity.<br>-Ca (II) complex<br>acts as a promising<br>anti-inflammatory<br>agent.<br>-Sr (II) complex<br>along with Ca (II)<br>complex exhibited<br>significant<br>analgesic effects. | 21 |
| 8  | Synthesis,<br>characterization,<br>and biological<br>activity of<br>transition metals<br>complexes with<br>mefenamic acid<br>(NSAIDs) | Mefenamic<br>acid<br>-                                                              | Co (II)<br>Cu (II)<br>Zn (II)<br>Ni (II)<br>Fe (III) | Binary<br>complex  | Elemental<br>analysis, FTIR<br>and UV-visible<br>spectroscopy.                                         | Antifungal,<br>antibacterial,<br>antitumor,<br>antioxidant<br>activity              | -Nickle mefenamic<br>acid complex<br>exhibited<br>pronounced activity<br>against <i>F. solani</i> .<br>-Antitumor activity<br>of the products was<br>higher than that of<br>the free ligand.                                                               | 22 |
| 9  | Synthesis and<br>characterization<br>of silver(I)<br>complexes with<br>ligands having<br>anti-<br>inflammatory<br>properties          | Ibuprofen,<br>Naproxen,<br>Mefenamic<br>acid,<br>Aspirin, and<br>salicylic<br>acid. | Ag (I)                                               | Binary<br>complex  | Elemental<br>analysis, FT-IR,<br><sup>1</sup> H and <sup>13</sup> C<br>NMR, X-ray<br>diffraction       | Anti-<br>inflammatory,<br>Antimicrobial<br>activity                                 | Enhanced anti-<br>inflammatory and<br>antimicrobial<br>properties.                                                                                                                                                                                         | 23 |
| 10 | Synthesis,<br>characterization,<br>the anti-<br>inflammatory and<br>analgesic activity<br>of transition                               | 3-[1-(2-<br>hydroxyphe<br>nyl)<br>ethylideami<br>no]-2-<br>phenyl-3,4-              | Co (II)<br>Cu (II)<br>Zn (II)<br>Ni (II)             | Ternary<br>complex | Elemental<br>analysis,<br>conductivity,<br>magnetic<br>moment<br>measurements,                         | Anti-<br>inflammatory<br>and analgesic<br>activity                                  | -Anti-inflammatory<br>activity was<br>observed for Ni<br>(II), Cu (II) and Zn<br>(II) complexes.<br>-The analgesic                                                                                                                                         | 24 |

|     | . 1 1                                    | 1.1 1 .                | [        |         |                             | -                             | , · ·, · ·, ·                        |    |
|-----|------------------------------------------|------------------------|----------|---------|-----------------------------|-------------------------------|--------------------------------------|----|
|     | metal complexes<br>of 3-[1-(2-           | dihydroquin<br>azolin- |          |         | IR, NMR, UV-<br>vis and EPR |                               | activity of the                      |    |
|     | of 3-[1-(2-<br>hydroxyphenyl)            | 4(3H)-one              |          |         |                             |                               | complexes was greater than the       |    |
|     | ethylideamino]-2-                        | 4(311)-0110            |          |         | spectroscopy.               |                               | standard.                            |    |
|     | phenyl-3,4-                              | Schiff base            |          |         |                             |                               | standard.                            |    |
|     | dihydroquinazoli                         | Senin base             |          |         |                             |                               |                                      |    |
|     | n-4(3H)-one                              |                        |          |         |                             |                               |                                      |    |
| 11  | Quasi-                                   | Mefenamic              | Co (II)  | Binary  | Elemental                   | Antibacterial,                | All complexes                        | 25 |
|     | Isostructural Co                         | acid                   | Ni (II)  | complex | analysis (EA),              | Antioxidant                   | showed an                            |    |
|     | (II) and Ni (II)                         |                        | . /      |         | flame atomic                | and                           | antioxidant activity                 |    |
|     | Complexes with                           | -                      |          |         | absorption                  | Antimicrobial                 | higher than that of                  |    |
|     | Mefenamato                               |                        |          |         | spectrometry                | Activities                    | mefenamic acid.                      |    |
|     | Ligand:                                  |                        |          |         | (FAAS), FTIR,               |                               |                                      |    |
|     | Synthesis,                               |                        |          |         | and                         |                               |                                      |    |
|     | Characterization                         |                        |          |         | thermogravimet              |                               |                                      |    |
|     | and Biological                           |                        |          |         | ric analysis                |                               |                                      |    |
| 10  | Activity                                 | D:1 (                  |          | T       | (TGA)                       | A                             | 751 11 1 1                           |    |
| 12  | Synthesis,                               | Diclofenac             | -        | Ternary | Elemental                   | Anti-                         | The ligand and                       | 26 |
|     | characterization, antimicrobial and      | Schiff Base            |          | complex | analysis, Molar             | inflammatory<br>Antimicrobial | metal complexes<br>show better anti- |    |
|     | antimicrobial and                        | Schill Base            |          |         | conductance,<br>FTIR,       | activity                      | microbial activities                 |    |
|     | inflammatory                             |                        |          |         | Electronic                  | activity                      | than the parent                      |    |
|     | studies of some                          |                        |          |         | spectra, 1H                 |                               | drug. The metal                      |    |
|     | novel Schiff base                        |                        |          |         | NMR spectrum,               |                               | complexes possess                    |    |
|     | metal complexes                          |                        |          |         | Mass spectrum               |                               | satisfactory anti-                   |    |
|     | derived from the                         |                        |          |         | using LC-MS                 |                               | inflammatory                         |    |
|     | drug, diclofenac                         |                        |          |         | Spectrometer.               |                               | potential properties.                |    |
|     | U,                                       |                        |          |         | I                           |                               | 1 1 1                                |    |
|     |                                          |                        |          |         |                             |                               |                                      |    |
| 13  | Synthesis,                               | Diclofenac             | Cr (III) | Binary  | Elemental                   | Anti-                         | Complexes may                        | 27 |
|     | characterization,                        | sodium                 | Mn (II)  | complex | analysis,                   | inflammatory                  | play a role in                       |    |
|     | and anti-                                |                        | Fe (III) |         | magnetic                    | Activity                      | decreasing the                       |    |
|     | inflammatory                             | -                      | Zn (II)  |         | susceptibility,<br>molar    |                               | synthesis of the                     |    |
|     | effects of Cr (III),<br>Mr (II) Eq (III) |                        |          |         | conductance,                |                               | proinflammatory<br>PGE2 and          |    |
|     | Mn (II), Fe (III)<br>and Zn (II)         |                        |          |         | electronic and              |                               | concomitantly,                       |    |
|     | complexes with                           |                        |          |         | Infrared                    |                               | increasing the                       |    |
|     | diclofenac                               |                        |          |         | spectroscopy.               |                               | synthesis of the                     |    |
|     | sodium                                   |                        |          |         | speedobeopy.                |                               | anti-inflammatory                    |    |
|     |                                          |                        |          |         |                             |                               | PGF2a.                               |    |
| 14  | Copper (II)                              | Diclofenac             | Cu (II)  | Binary  | Electronic and              | Anti-                         | Complexes possess                    | 28 |
|     | complexes of                             | sodium                 |          | complex | Infrared                    | inflammatory                  | promising anti-                      |    |
|     | diclofenac:                              |                        |          | -       | spectroscopy.               | Activity and                  | inflammatory                         |    |
|     | Spectroscopic                            | -                      |          |         |                             | DNA strand                    | properties.                          |    |
|     | studies and DNA                          |                        |          |         |                             | breakage                      | Binuclear copper                     |    |
|     | strand breakage                          |                        |          |         |                             | (Anti-tumour)                 | (II) complexes,                      |    |
|     |                                          |                        |          |         |                             |                               | could have some                      |    |
|     |                                          |                        |          |         |                             |                               | relevance in the                     |    |
|     |                                          |                        |          |         |                             |                               | treatment of tumour                  |    |
| 1.7 | D'alaf                                   | D: 1 f                 |          | Ten     | <b>F</b> 1                  | A                             | cell lines                           | 20 |
| 15  | Diclofenac                               | Diclofenac             | Cu (II)  | Ternary | Elemental                   | Anti-                         | The complexes                        | 29 |
|     | copper complexes                         | sodium                 | 1        | complex | analysis, Molar             | inflammatory                  | have better anti-                    | 1  |
|     |                                          |                        |          | *       | aanduatanaa                 | Activity                      | inflommatory                         |    |
|     | with anti-<br>inflammatory               | 1,3-propane            |          | -       | conductance,<br>FTIR,       | Activity                      | inflammatory<br>activity and lower   |    |

|    |                                 |             | 1        | 1       | · ·                         | [                        |                                            |    |
|----|---------------------------------|-------------|----------|---------|-----------------------------|--------------------------|--------------------------------------------|----|
|    | activity, and                   | diamine     |          |         | Electronic                  |                          | stomach side                               |    |
|    | preparation<br>methods thereof  |             |          |         | spectra, 1H                 |                          | effects than ligands<br>and can be used to |    |
|    | methods thereof                 |             |          |         | NMR spectrum.               |                          |                                            |    |
|    |                                 |             |          |         |                             |                          | prepare anti-<br>inflammatory              |    |
|    |                                 |             |          |         |                             |                          | medicines.                                 |    |
| 16 | Transition metal                | Diclofenac  | Cu (II)  | Binary  | Spectroscopic               | Anti-                    | Some of the                                | 30 |
| 10 | complexes of                    | sodium      | Cu (II)  | complex | studies, X-ray              | inflammatory             | complexes exhibit                          | 30 |
|    | diclofenac with                 | sourum      |          | complex | crystallography             | Activity                 | very promising                             |    |
|    | potentially                     | _           |          |         | and                         | Therefy                  | anti-inflammatory                          |    |
|    | interesting anti-               |             |          |         | electrochemical             |                          | activity and act as                        |    |
|    | inflammatory                    |             |          |         | studies                     |                          | antioxidant                                |    |
|    | activity.                       |             |          |         |                             |                          | compounds, a                               |    |
|    |                                 |             |          |         |                             |                          | property that is                           |    |
|    |                                 |             |          |         |                             |                          | absent from                                |    |
|    |                                 |             |          |         |                             |                          | diclofenac.                                |    |
| 17 | Preparation,                    | Mefenamic   | Cu (II)  | Binary  | Magnetic                    | Analgesic,               | The Co (II)                                | 31 |
|    | Diagnosis,                      | acid and    | Co (II)  | complex | susceptibility,             | Antimicrobial            | complexes have                             |    |
|    | Biological                      | metformin   |          | _       | molar                       | activity                 | promising                                  |    |
|    | Activity, and                   | -           |          |         | conductance,                |                          | antibacterial                              |    |
|    | Theoretical                     |             |          |         | TG analyses,                |                          | properties.                                |    |
|    | Studies of Some                 |             |          |         | FTIR and UV                 |                          | Cu (II) complexes                          |    |
|    | Mixed Drug                      |             |          |         | spectra                     |                          | showed significant                         |    |
| 10 | Complexes                       |             |          | -       |                             |                          | analgesic property.                        |    |
| 18 | Synthesis,                      | Mefenamic   | -        | Ternary | Mp, TLC, UV,                | •                        | Complexes were                             | 32 |
|    | Characterization                | acid and    |          | complex | FT-IR, and                  | Antibacterial            | found to exhibit                           |    |
|    | and Biological                  | Oxoazetidin |          |         | elemental                   | activity                 | good antibacterial                         |    |
|    | Activity of New Mefenamic Acid- | e           |          |         | analysis                    |                          | and analgesic                              |    |
|    | - Oxoazetidine                  | Schiff's    |          |         |                             |                          | activity                                   |    |
|    | Derivatives                     | base        |          |         |                             |                          |                                            |    |
| 19 | Comparative                     | Indomethac  | Cr (III) | Binary  | FT-IR                       | Analgesic,               | The Cr and Ni                              | 33 |
|    | physicochemical,                | in          | Ni (II)  | complex | spectroscopy,               | Anti-                    | complex of                                 |    |
|    | anti-                           |             |          | 1       | UV–visible                  | inflammatory             | indomethacin may                           |    |
|    | inflammatory,                   | -           |          |         | spectroscopy,               | Activity                 | show promising                             |    |
|    | and analgesic                   |             |          |         | atomic                      | -                        | pharmacological                            |    |
|    | activity assay of               |             |          |         | absorption                  |                          | effects which can                          |    |
|    | synthesized                     |             |          |         | spectroscopy,               |                          | be revealed by                             |    |
|    | chromium and                    |             |          |         | calorimetric                |                          | extensive analysis                         |    |
|    | nickel complexes                |             |          |         | DSC analysis,               |                          | using PK-PD test                           |    |
|    | of indomethacin                 |             |          |         | and melting                 |                          | model.                                     |    |
| 20 | Cruthania 1                     | Nonrows     | 7n (II)  | Dinama  | point analysis.             | Anti                     | A outo                                     | 24 |
| 20 | Synthesis and Characterization  | Naproxen    | Zn (II)  | Binary  | Physical                    | Anti-                    | Acute anti-                                | 34 |
|    | of New Ligands                  |             |          | complex | properties<br>determination | inflammatory<br>Activity | inflammatory<br>activity indicated         |    |
|    | Attached to                     | -           |          |         | (melting points             | 13011 v Ity              | that nitro-                                |    |
|    | NSAIDs Moiety                   |             |          |         | and Rf values),             |                          | containing                                 |    |
|    | 1,51 11255 11101017             |             |          |         | FTIR and 1H-                |                          | analogue has a                             |    |
|    |                                 |             |          |         | NMR                         |                          | faster onset                               |    |
|    |                                 |             |          |         | Spectroscopy.               |                          | of action and                              |    |
|    |                                 |             |          |         |                             |                          | significantly more                         |    |
|    |                                 |             |          |         |                             |                          | effect than                                |    |
|    |                                 |             |          |         |                             |                          | Naproxen.                                  |    |
| 21 | Copper (II)                     | Benzimidaz  | Cu (II)  | Ternary | Elemental                   | Anti-                    | The synthesized                            | 35 |

|    | complexes as<br>potential<br>anticancer and<br>Nonsteroidal anti-<br>inflammatory<br>agents: In vitro<br>and in vivo<br>studies                                              | ole-derived<br>scaffolds<br>Phenanthrol<br>ine and<br>2,2'-<br>bipyridyl |                     | complex            | analyses, FTIR<br>and Mass<br>Spectroscopy                                                                                                       | inflammatory<br>Activity, Anti-<br>cancer activity                                                 | complexes are<br>promising<br>candidates to act as<br>anticancer and<br>COX 2 inhibitor<br>(NSAID) agents                                                                                                            |    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 22 | Transition metal<br>complexes with<br>ibuprofen<br>hydrazide:<br>synthesis,<br>characterization,<br>and biological<br>assays.                                                | Ibuprofen<br>hydrazide<br>-                                              | Pd (II)<br>Pt (II)  | Binary<br>complex  | Elemental<br>analyses, FTIR,<br>UV–Visible<br>spectroscopy,<br>1H and 13C<br>NMR,<br>Electrospray<br>ionization mass<br>spectrometry<br>(ESI-MS) | Anti-<br>inflammatory<br>Activity,<br>Antimicrobial<br>activity,<br>Antiproliferati<br>ve          | Complexes show<br>considerable anti-<br>inflammatory and<br>anti-microbial<br>activity and higher<br>antiproliferative<br>activity                                                                                   | 36 |
| 23 | Antioxidant<br>capacity and<br>DNA-interaction<br>studies of zinc<br>complexes with a<br>non-steroidal<br>anti-<br>inflammatory<br>drug, mefenamic<br>acid                   | Mefenamic<br>acid<br>2,2'<br>Bipyridine                                  | Zn (II)             | Ternary<br>complex | Elemental<br>analyses, FTIR,<br>UV-visible<br>spectroscopy                                                                                       | Analgesic,<br>Anti-<br>inflammatory<br>Activity,<br>Antioxidant<br>activity, DNA<br>binding study. | Promising<br>analgesic, anti-<br>inflammatory<br>Activity. The<br>complexes can bind<br>to DNA via<br>intercalation as<br>concluded by DNA<br>solution viscosity<br>measurements.                                    | 37 |
| 24 | Synthesis and<br>Characterization<br>of Celecoxib<br>Derivatives as<br>Possible Anti-<br>Inflammatory,<br>Analgesic,<br>Antioxidant,<br>Anticancer and<br>Anti-HCV<br>Agents | Celecoxib<br>N-<br>substituted<br>benzenesulf<br>onamide                 | Cu (II)             | Ternary<br>complex | Elemental<br>analyses, FTIR,<br>UV-visible<br>spectroscopy<br>and molar<br>conductance.                                                          | Anti-<br>inflammatory,<br>Analgesic,<br>Antioxidant,<br>Anticancer<br>and Anti-HCV<br>activity     | The complex<br>showed significant<br>analgesic and<br>promising anti-<br>inflammatory<br>activity with<br>relatively reduced<br>lipid peroxidation<br>and did not cause<br>tissue damage in<br>the liver, or kidney. | 38 |
| 25 | Synthesis,<br>characterization,<br>anti-<br>inflammatory and<br>analgesic activity<br>of transition<br>metal complexes<br>of Diclofenac<br>sodium                            | Diclofenac<br>sodium<br>-                                                | Zn (II)<br>Fe (III) | Binary<br>complex  | Melting point<br>determination,<br>Elemental<br>analyses, Molar<br>conductance,<br>FTIR, UV-<br>Visible<br>spectroscopy                          | Analgesic,<br>Anti-<br>inflammatory<br>Activity,<br>Antioxidant<br>activity,                       | Acute anti-<br>inflammatory<br>activity and<br>analgesic activity<br>were reported.<br>Significant<br>antioxidant activity.                                                                                          | 39 |
| 26 | Synthesis,<br>Characterization<br>and Biological<br>Activity of<br>Ibuprofen<br>hydrazide Cu (II)                                                                            | Ibuprofen                                                                | Cu (II)             | Binary<br>complex  | FT-IR<br>spectroscopy,<br>UV–Visible<br>spectroscopy,<br>AAS, TLC, MS                                                                            | Anti-<br>inflammatory<br>Activity                                                                  | Upon complexing<br>Ibuprofen with Cu<br>(II) we observed<br>reduced GI adverse<br>effects and toxicity.                                                                                                              | 40 |

Citation: Maryam Zebhi et al. Ijppr.Human, 2023; Vol. 28 (4): 227-239.

|    | complex                                                                                                   |                      |                                |                   |                                                                          |                                                                                 |                                                                                                                                                           |    |
|----|-----------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|-------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 27 | Synthesis and<br>characterization<br>of Mn (II) and Zn<br>(II) complexes<br>with Celecoxib                | Celecoxib            | Mn (II)<br>Zn (II)             | Binary<br>complex | Elemental<br>analyses, FTIR<br>and Mass<br>Spectroscopy                  | Analgesic,<br>Anti-<br>inflammatory<br>Activity,<br>Antioxidant<br>activity,    | Mn and Zn<br>complex of<br>Celecoxib may<br>show promising<br>pharmacological<br>effects                                                                  | 41 |
| 28 | Synthesis,<br>Diagnosis,<br>Biological<br>Activity, and<br>toxicity Studies of<br>NSAID drug<br>complexes | Naproxen<br>-        | Cu (II)<br>Zn (II)<br>Fe (III) | Binary<br>complex | Elemental<br>analyses, FTIR,<br>UV- Visible<br>spectroscopy,<br>XRD, TGA | Analgesic,<br>Anti-<br>inflammatory<br>Activity, Anti-<br>microbial<br>activity | The complexes<br>have better anti-<br>inflammatory<br>activity and lower<br>side effects than<br>parent Celecoxib.                                        | 42 |
| 29 | Synthesis,<br>Characterization,<br>and Biological<br>Activity of Cu<br>(II) Complexes of<br>Aceclofenac   | Aceclofena<br>c<br>- | Cu (II)                        | Binary<br>complex | Elemental<br>analyses, FTIR,<br>UV–visible<br>spectroscopy,<br>NMR.      | Analgesic,<br>Anti-<br>inflammatory<br>Activity                                 | Binuclear Cu (II)<br>complexes with<br>aceclofenac have<br>promising anti-<br>inflammatory<br>activity.                                                   | 43 |
| 30 | Synthesis,<br>Characterization<br>and Anti-<br>inflammatory<br>assay of metal<br>(II) complexes           | Aspirin<br>-         | Cu (II)<br>Zn (II)             | Binary<br>complex | Elemental<br>analyses, FTIR,<br>UV–Visible<br>spectroscopy.              | Anti-<br>inflammatory<br>Activity                                               | Peak oedema<br>develops within the<br>first 3 to 4 hours,<br>and is inhibited by<br>oral doses of anti-<br>inflammatory drug<br>complexes<br>synthesized. | 44 |

From the above conducted systematic review study, it is observed that the most practised methods of characterization of metal complexes are: Elemental analyses, FTIR, UV–Visible spectroscopy, <sup>1</sup>H and <sup>13</sup>C NMR, X-ray diffraction, Melting point determination, Molar conductance and Mass spectroscopy.

The widely reported biological activity of drug metal complexes includes Anti-inflammatory activity, Analgesic, Anti-microbial activity, Antioxidant activity and Anti-cancer activity.

Metal complexes containing NSAIDs are a group of compounds that have attracted much interest among the scientific community. More specifically, d-block metals and their cations, namely, copper, cobalt, nickel, manganese, and zinc are by far the most exploited in NSAID-based metal complexes (metallodrugs).

Complexes were found to exhibit good antibacterial and antioxidant activity. Binuclear copper (II) complexes, could have some relevance in the treatment of tumour cell lines, thus indicating significant anticancer activity.

### CONCLUSION

The complexation of NSAIDs with metal can have better biological activity when compared to the parent drug. It is also significant that after complexing, the drugs show promising antiinflammatory and analgesic activities. The complexes also showed a faster onset of action and reduced GI adverse effects and toxicity, did not cause tissue damage in the liver, and kidney thereby reducing the side effects and enhancing the bioavailability.

In this review, the focus has been on the remarkable effects of these metallodrugs, including their wide range of biological activities. Since the pharmacologic effects of NSAIDs can be altered upon coordination to metal ions, it is possible to enhance the biological effects of the drugs and to decrease possible side effects, and eventually, it may allow the interaction with new biomolecular targets. This may be an advantageous path for the further optimization and consequent clinical development of metal–NSAID compounds.

### REFERENCES

1. Santos AC, Monteiro LP, Gomes AC, Martel F, Santos TM, Ferreira BJ. NSAID-based coordination compounds for biomedical applications: Recent advances and developments. International Journal of Molecular Sciences. 2022 Mar 5;23(5):2855.

2. Deuis JR, Dvorakova LS, Vetter I. Methods used to evaluate pain behaviours in rodents. Frontiers in molecular neuroscience. 2017 Sep 6; 10:284.

3. Gispert JR. Coordination chemistry. Weinheim: Wiley-VCH; 2008 May 5.

4. Bowman-James K. Alfred Werner revisited: the coordination chemistry of anions. Accounts of chemical research. 2005 Aug 16;38(8):671-8.

5. Selvaganapathy M, Raman N. Pharmacological activity of a few transition metal complexes: a short review. Journal of Chemical Biology & Therapeutics. 2016;1(02):1000108.

6. Krstic NS, Nikolic RS, Stankovic MN, Nikolic NG, Dordevic DM. Coordination compounds of M (II) biometal ions with acid-type anti-inflammatory drugs as ligands–a review. Tropical Journal of Pharmaceutical Research. 2015;14(2):337-49.

7. Lawrance G.A. Introduction to Coordination Chemistry. 1st ed. Wiley; Hoboken, NJ, USA: 2009

8. Housecroft C.E., Sharpe A.G. Inorganic Chemistry. 4th ed. Pearson; London, UK: 2012.

9. Leung C.H., Lin S., Zhong H.J., Ma D.L. Metal complexes as potential modulators of inflammatory and autoimmune responses. Chem. Sci. 2015; 6:871–884. doi: 10.1039/C4SC03094J.

10. Saddam Hossain M. Selected Pharmacological Applications of 1stRow Transition Metal Complexes: A review. Clin. Med. Res. 2017; 6:177–191. doi: 10.11648/j.cmr.20170606.13

11. Anthony E.J., Bolitho E.M., Bridgewater H.E., Carter O.W.L., Donnelly J.M., Imberti C., Lant E.C., Lermyte F., Needham R.J, Palau M., et al. Metallodrugs are unique: Opportunities and challenges of discovery and development. Chem. Sci. 2020; 11:12888–12917. doi: 10.1039/D0SC04082G.

12. Kumar M., Kumar G., Kant A., Masram D.T. Advances in Metallodrugs: Preparation and Applications in Medicinal Chemistry. 1st ed. Wiley; Hoboken, NJ, USA: 2020. Role of Metallodrugs in Medicinal Inorganic Chemistry; pp. 71–113

13. Fokunang C. Overview of non-steroidal anti-inflammatory drugs (NSAIDs) in resource-limited countries. MOJ Toxicol. 2018; 4:5–13. doi: 10.15406/mojt.2018.04.00081.

14. Banti C.N., Hadjikakou S.K. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Metal Complexes and Their Effect at the Cellular Level. Eur. J. Inorg. Chem. 2016; 2016:3048–3071. doi: 10.1002/ejic.201501480.

15. AYİPO Y, OSUNNİRAN W, BADEGGİ U, SAHEED I, JIMOH A, BABAMALE H. Synthesis, characterization, and antibacterial study of co (II) and cu (II) complexes of mixed ligands of piperaquine and diclofenac. Journal of the Turkish Chemical Society Section A: Chemistry. 2021 May 5;8(2):633-50. 2

16. El-Hameed MA, Abdel-Rahman LH, Abdel-Mawgoud AM, Mohamed SK. Zinc (II) complexes derived from ibuprofen Schiff base ligands: synthesis, characterization, and biological activity. Sohag Journal of Sciences. 2022 Sep 1;7(3):123-30.

17. Anuradha S, Pramila S. Synthesis, characterization, in-vitro anti-inflammatory, and antimicrobial screening of metal (II) mixed diclofenac and acetaminophen complexes. Indian J. Chem. 2000; 39:874-6.

18. Hasan MS, Kayesh R, Begum F, Rahman SM. Transition metal complexes of naproxen: synthesis, characterization, forced degradation studies, and analytical method verification. Journal of analytical methods in chemistry. 2016 Feb 29;2016.

19. Ogodo UP, Abosede OO. Synthesis and characterization of Cu (II) complexes of salicylate ligands. Journal of Applied Sciences and Environmental Management. 2018;22(12):1961-4.

20. Vadivel E, Korgaonkar KU. Synthesis, characterization and docking studies of metal (II) complexes of antiinflammatory drug celecoxib. J. Chem. Pharm. Res. 2018; 10:137-41.

21. Samra MM, Hafeez H, Sadia A, Imran M, Basra MA. Synthesis, characterization, docking and biological studies of M (II) (M= Mg, Ca, Sr) Piroxicam complexes. Journal of Molecular Structure. 2022 Apr 15; 1254:132256.

22. Ramzan S, Saleem S, Mirza B, Ali S, Ahmed F, Shahzadi S. Synthesis, characterization, and biological activity of transition metals complexes with mefenamic acid (NSAIDs). Russian Journal of General Chemistry. 2015 Jul; 85:1745-51.

23. Azócar MI, Muñoz H, Levin P, Dinamarca N, Gómez G, Ibañez A, Garland MT, Paez MA. 1.1. 5. Synthesis and characterization of silver (I) complexes with ligands having anti-inflammatory properties. Communications in Inorganic Synthesis. 2013;1(1).

24. Hunoor RS, Patil BR, Badiger DS, Vadavi RS, Gudasi KB, Chandrashekhar VM, Muchchandi IS. Synthesis, characterization, anti-inflammatory and analgesic activity of transition metal complexes of 3-[1-(2-hydroxyphenyl) ethylideamino] -2-phenyl-3, 4-dihydroquinazolin-4 (3H) -one. Applied Organometallic Chemistry. 2011 Jun;25(6):476-83.

25. Gacki M, Kafarska K, Pietrzak A, Korona-Głowniak I, Wolf WM. Quasi-isostructural Co (II) and Ni (II) complexes with mefenamic ligand: Synthesis, characterization, and biological activity. Molecules. 2020 Jul 7;25(13):3099.

26. Shilpa KG, Shivaprasad KH, Archana MR. SYNTHESIS, CHARACTERIZATION, ANTIMICROBIAL AND ANTI-INFLAMMATORY STUDIES OF SOME NOVEL SCHIFF BASE METAL COMPLEXES DERIVED FROM THE DRUG, DICLOFENAC. Rasayan Journal of Chemistry. 2021 Oct 1;14(4).

27. Singh A, Singh P. Synthesis, characterization, and anti-inflammatory effects of Cr (III), Mn (II), Fe (III) and Zn (II) complexes with diclofenac sodium.

28. Theodorou A, Demertzis MA, Kovala-Demertzi D, Lioliou EE, Pantazaki AA, Kyriakidis DA. Copper (II) complexes of diclofenac: Spectroscopic studies and DNA strand breakage. BioMetals. 1999 Jun; 12:167-72.

29. Dimiza F, Perdih F, Tangoulis V, Turel I, Kessissoglou DP, Psomas G. Interaction of copper (II) with the non-steroidal anti-inflammatory drugs naproxen and diclofenac: synthesis, structure, DNA-and albumin-binding. Journal of inorganic biochemistry. 2011 Mar 1;105(3):476-89.

30. Kovala-Demertzi D. Transition metal complexes of diclofenac with potentially interesting antiinflammatory activity. Journal of inorganic biochemistry. 2000 Apr 30;79(1-4):153-7.

31. Abbas BF, Kamel BA, Khamais WM. Preparation, diagnosis, biological activity, and theoretical studies of some mixed drug complexes. The Scientific World Journal. 2019 May 8;2019.

32. Raauf AM. Synthesis, Characterization and Biological Activity of New Mefenamic acid-Oxoazetidine Derivatives. Al Mustansiriyah Journal of Pharmaceutical Sciences. 2013 Jun 1;13(1):75-81.

33. Sukul A, Haque S, Poddar SK, Hossain MS, Niloy KK, Saha SK. Comparative physicochemical, antiinflammatory, and analgesic activity assay of synthesized chromium and nickel complexes of indomethacin. Cogent Chemistry. 2017 Jan 1;3(1):1302312.

34. Mahdi MF, Dawood AH, Hantoush AM. Synthesis and Characterization of New Ligands Attached to NSAIDs Moiety. Int J Adv Res. 2015;3(6):172-92.

Citation: Maryam Zebhi et al. Ijppr.Human, 2023; Vol. 28 (4): 227-239.

35. Hussain A, AlAjmi MF, Rehman MT, Amir S, Husain FM, Alsalme A, Siddiqui MA, AlKhedhairy AA, Khan RA. Copper (II) complexes as potential anticancer and Nonsteroidal anti-inflammatory agents: In vitro and in vivo studies. Scientific reports. 2019 Mar 27;9(1):5237.

36. Manzano CM. Transition metal complexes with ibuprofen hydrazide: synthesis, characterization, and biological assays = Complexos de metais de transição com hidrazida do ibuprofeno: síntese, caracterização e ensaios biológicos (Doctoral dissertation, [sn]).

37. Tarushi A, Karaflou Z, Kljun J, Turel I, Psomas G, Papadopoulos AN, Kessissoglou DP. Antioxidant capacity and DNA-interaction studies of zinc complexes with a non-steroidal anti-inflammatory drug, mefenamic acid. Journal of inorganic biochemistry. 2013 Nov 1; 128:85-96.

38. Küçükgüzel ŞG, Coşkun İ, Aydın S, Aktay G, Gürsoy Ş, Çevik Ö, Özakpınar ÖB, Özsavcı D, Şener A, Kaushik-Basu N, Basu A. Synthesis and characterization of celecoxib derivatives as possible anti-inflammatory, analgesic, antioxidant, anticancer and anti-HCV agents. Molecules. 2013 Mar 21;18(3):3595-614.

39. Zhou S, Zou H, Chen G, Huang G. Synthesis, and biological activities of chemical drugs for the treatment of rheumatoid arthritis. Topics in Current Chemistry. 2019 Oct; 377:1-23.

40. Krasnovskaya O, Naumov A, Guk D, Gorelkin P, Erofeev A, Beloglazkina E, Majouga A. Copper coordination compounds as biologically active agents. International Journal of Molecular Sciences. 2020 May 31;21(11):3965.

41. Rafique S, Idrees M, Nasim A, Akbar H, Athar A. Transition metal complexes as potential therapeutic agents. Biotechnology and Molecular Biology Reviews. 2010 Apr 30;5(2):38-45.

42. Staninska M. Synthesis, structures, spectroscopy, and biological activity of metal complexes with drugs.

43. Mohammed MF, Dawood AH, Rafiya Fatima. Synthesis and Characterization and Biological Activity of Cu (II) Complexes of Aceclofenac. Int J Adv Res. 2018;3(6):172-92.

44. Winter CA, Risley EA, Nuss GW. Carrageenin-induced oedema in the hind paw of the rat as an assay for anti-inflammatory drugs. Proceedings of the society for experimental biology and medicine. 1962 Dec;111(3):544-7.

45. Sandhu QU, Pervaiz M, Majid A, Younas U, Saeed Z, Ashraf A, Khan RR, Ullah S, Ali F, Jelani S. Schiff base metal complexes as anti-inflammatory agents. Journal of Coordination Chemistry. 2023 Jun 21:1-25.