
IJPPR INTERNATIONAL JOURNAL OF PHARMACY & PHARMACEUTICAL RESEARCH An official Publication of Human Journals

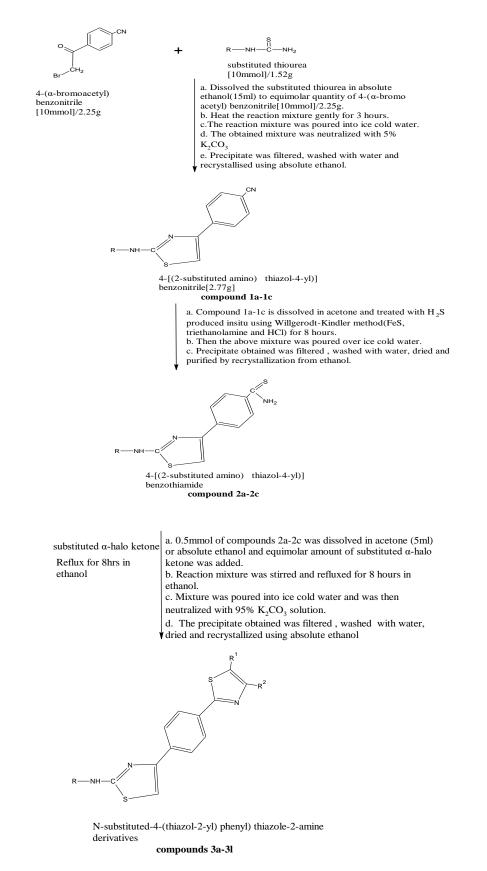
Human Journals **Research Article** January 2024 Vol.:30, Issue:1 © All rights are reserved by Shashi Prabha et al.

Synthesis and Biological Evaluation of Phenyl Aminothiazole Derivatives for Antimicrobial Activity

ijppr.humanjournals.com

Keywords: Thiazole, Antibacterial, antimicrobial, Grampositive & Gram-negative bacteria

ABSTRACT


A series of 12 new phenylaminethiazole derivatives (3a-3l) were synthesized from 4-(2- phenylamino)-thiazol-4-yl)benzothioamide and 2-hydroxy-5-(2-(phenylamino)-thiazol-4yl)- benzonitrile with several reaction. All compounds were characterized by elemental analysis and spectral data (MS, FT-IR and NMR). The final 12 substances were screened for antimicrobial activity, against two Gram-positive, one Gramnegative bacterial strains, and two fungal strains. Some of the synthesized molecules were partially potent than the reference drugs, against the pathogenic strains used. The antibacterial activity of compounds was more pronounced against the Grampositive strains. Compound 3i manifested the highest growth inhibitory effect against all pathogens tested.

1. INTRODUCTION:

Since the discovery and development of effective drugs against microbial infections, human health has been significantly improved [1]. However, the latter abuse and the inappropriate use of anti-infectious agents have led to microbial multi-drug resistance. Faced with this problem, it is imperative to develop new approaches to circumvent this phenomenon, thus the need to discover new classes of drugs with original structures and mechanisms of action [2,3].

Thiazole is the five-member ring system having two hetero atoms (S, N) placed in heterocyclic ring at 1, 3-positions. Thiazoles are useful structural units in the field of medicinal chemistry and have been reported to exhibit a variety of biological activity [4, 5]. Number of thiazole derivatives shows good biological as well pharmacological activities like antibacterial and antifungal, analgesic, CNS stimulate, antitubercular, anti-HIV, anti-inflammatory, algicidol etc. [6-12] Thiazole containing N=C=S moiety have been used as antiphychotics and antimalarial. Aminothiazole derivatives are well explored as useful clinical agents and some of the derivatives of thiazoles have shown inhibition towards herpes simplex virus. [13-15] The present paper deals with the synthesis of some novel amides of phenylazothiazoles to evaluate their biological activity.

2. EXPERIMENTAL

Scheme 1: Synthesis of phenyl aminothiazole derivatives [16, 17]

Citation: Shashi Prabha et al. Ijppr.Human, 2024; Vol. 30 (1): 10-24.

Characterization of synthesized compound:

Melting point: The melting points of all the synthesized compounds were determined using capillary tubes with Thermonic model C-LMP-1-Campbell melting point apparatus and were uncorrected.

Thin layer chromatography: The synthesized compounds were tested for their purity by performing TLC over glass plates coated with silica gel with a suitable mobile phase system and detected by iodine vapor.

Infra-red spectroscopy: The structures of the synthesized compounds were elucidated by JASCO FTIR-4100 spectrophotometer in KBr disc.

NMR spectroscopy: 1HNMR spectral study was done using AV-III 400 Fourier Transform NMR spectrophotometer in TMS as standard.

Mass spectroscopy: Mass spectra of selected compounds were determined on JOEL SX 102 -GC MATE 700 EV instrument employing electron impact ionization technique. [18-22]

Antibacterial activity: The compounds were tested in-vitro for their antibacterial activity against two microorganisms viz. Staphylococcus albus, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Vibrio cholera, Micrococcus luteus Salmonella Paratyphii, which are pathogenic in human beings by Disc diffusion method and Broth Dilution Method. The antibacterial activity was evaluated by measuring zone of inhibition in mm and minimum inhibitory concentration in μ g/ml. [23-24]

Antifungal activity: The compounds were tested in-vitro for their antifungal activity against Aspergillus niger, Trichophyton rubrum, Candida albicans, and Monascus purpureus by Disc diffusion method and Broth Dilution Method. The antifungal activity was evaluated by measuring the zone of inhibition in mm and minimum inhibitory concentration in μ g/ml. [23-24]

3. RESULTS AND DISCUSSION

Table 1: List of compounds synthesized	of compounds synthesized	oounds	of com	List o	le 1:	Tab
--	--------------------------	--------	--------	--------	-------	-----

Derivatives	R (Substituted thiourea)	Subst	Substituted α halo-ketone			
		R1	R2			
3a	3-Trifluoromethyl thiourea	Н	p-fluorophenyl			
			acetophenone			
3b	3-Trifluoromethyl thiourea	Н	p-chlorophenyl			
			acetophenone			
3c	3-Trifluoromethyl thiourea	Н	p-bromophenyl			
			acetophenone			
3d	3-Trifluoromethyl thiourea	Н	2,4-dichlorohenyl			
			acetophenone			
3e	4-Br-2-(Trifluoromethyl)phenyl	Н	p-fluorophenyl			
	thiourea		acetophenone			
3f	4-Br-2-(Trifluoromethyl)phenyl	Н	p-chlorophenyl			
	thiourea		acetophenone			
3g	4-Br-2-(Trifluoromethyl)phenyl	Н	p-bromophenyl			
	thiourea		acetophenone			
3h	4-Br-2-(Trifluoromethyl)phenyl	Н	2,4-dichlorophenyl			
	thiourea		acetophenone			
3i	4-Cl-2-(Trifluoromethyl)phenyl	Н	p-fluorophenyl			
	thiourea		acetophenone			
3ј	4-Cl-2-(Trifluoromethyl)phenyl	Н	p-chlorophenyl			
	thiourea		acetophenone			
3k	4-Cl-2-(Trifluoromethyl)phenyl	Н	p-bromophenyl			
	thiourea		acetophenone			
31	4-Cl-2-(Trifluoromethyl)phenyl	Н	2,4-dichlorophenyl			
	thiourea		acetophenone			

Derivatives	Chemical name of Compound	Structure
3a.	4-{4-[4-(4-fluorophenyl)-1,3-thiazol-2- yl]phenyl}- <i>N</i> -[4-(trifluoromethyl)phenyl]- 1,3-thiazol-2-amine	F ₃ C NH-C S
3b	4-{4-[4-(4-chlorophenyl)-1,3-thiazol-2- yl]phenyl}- <i>N</i> -[4-(trifluoromethyl)phenyl]- 1,3-thiazol-2-amine	F ₃ C NH-CN S
3c	4-{4-[4-(4-bromophenyl)-1,3-thiazol-2- yl]phenyl}- <i>N</i> -[4-(trifluoromethyl)phenyl]- 1,3-thiazol-2-amine	F ₃ C NH-C S
3d	4-{4-[4-(2,4-dichlorophenyl)-1,3-thiazol-2- yl]phenyl}- <i>N</i> -[4-(trifluoromethyl)phenyl]- 1,3-thiazol-2-amine	F ₃ C NH-C NH-C
3e.	<i>N</i> -[4-bromo-2-(trifluoromethyl)phenyl]-4- {4-[4-(4-fluorophenyl)-1,3-thiazol-2- yl]phenyl}-1,3-thiazol-2-amine	Br CF3 NH-C S

3f	<i>N</i> -[4-bromo-2-(trifluoromethyl)phenyl]-4- {4-[4-(4-chlorophenyl)-1,3-thiazol-2- yl]phenyl}-1,3-thiazol-2-amine	Br CF3 NH-cc ^N S
3g	4-{4-[4-(4-bromophenyl)-1,3-thiazol-2- yl]phenyl}- <i>N</i> -[4-bromo-2- (trifluoromethyl)phenyl]-1,3-thiazol-2- amine	Br CF3 NH-C S
3h	<i>N</i> -[4-bromo-2-(trifluoromethyl)phenyl]-4- {4-[4-(2,4-dichlorophenyl)-1,3-thiazol-2- yl]phenyl}-1,3-thiazol-2-amine	
3i	<i>N</i> -[4-chloro-2-(trifluoromethyl)phenyl]-4- {4-[4-(4-fluorophenyl)-1,3-thiazol-2- yl]phenyl}-1,3-thiazol-2-amine	Cl Cl CF ₃ NH-C S
3ј	4-{4-[4-(4-chlorophenyl)-1,3-thiazol-2- yl]phenyl}- <i>N</i> -[4-chloro-2- (trifluoromethyl)phenyl]-1,3-thiazol-2- amine	
3k	4-{4-[4-(4-bromophenyl)-1,3-thiazol-2- yl]phenyl}- <i>N</i> -[4-chloro-2- (trifluoromethyl)phenyl]-1,3-thiazol-2- amine	Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl Cl C

31	<i>N</i> -[4-chloro-2-(trifluoromethyl) phenyl]-4- {4-[4-(2,4-dichlorophenyl)-1,3-thiazol-2- yl]phenyl}-1,3-thiazol-2-amine	
	yrjphenyrj 1,5 und2012 uninte	

Table 3: Chemical Properties of synthesized compounds(3a-3l)

Derivati	Chemical	M.W	Compos	Composition				M.P. (°		
ves	Formula		С	Н	F	Ν	S	Br	Cl	C)
3a.	$C_{25}H_{15}F_4N_3S_2$	497.53	60.35%	3.04%	15.27%	23.25%	21.24%			170°C
3b	$C_{25}H_{15}F_3N_3S_2Cl$	513.98	58.42%	2.94%	11.09%	8.18%	12.48%		6.90%	256°C
3c	$C_{25}H_{15}F_3N_3S_2Br$	558.43	53.77%	2.71%	10.21%	7.52%	11.48%	14.31%		207°C
3d	$C_{25}H_{14}F_3N_3S_2Cl_2$	548.42	54.75%	2.57%	10.39%	7.66%	11.69%		13.93%	217°C
3e.	$C_{25}H_{14}F_4N_3S_2Br$	576.42	52.09%	2.45%	13.18%	7.29%	11.13%	13.86%		219°C
3f	$C_{25}H_{14}F_3N_3S_2BrCl$	592.88	50.65%	2.38%	9.61%	7.09%	10.82%	13.48%	5.98%	218°C
3g	$C_{25}H_{14}F_3N_3S_2Br_2$	637.33	47.11%	2.21%	8.94%	6.59%	10.06%	25.07%		182°C
3h	$C_{25}H_{13}F_3N_3S_2BrCl_2$	627.32	47.86%	2.09%	9.09%	6.70%	10.22%	12.74%	11.30%	201°C
3i	$C_{25}H_{14}F_4N_3S_2Cl$	531.97	56.44%	2.65%	14.29%	7.90%	12.06%	`	6.66%	146°C
3j	$C_{25}H_{14}F_3N_3S_2Cl_2$	548.42	54.75%	2.57%	10.39%	2.66%	11.69%		12.93%	205°C
3k	$C_{25}H_{14}F_3N_3S_2BrCl$	592.88	50.65%	2.38%	9.61%	7.09%	10.82%	13.48%	5.98%	197°C
31	$C_{25}H_{13}F_3N_3S_2Cl_3$	582.87	51.51%	2.25%	9.78%	7.21%	11.00%		18.25%	214°C

 Table 4: Physical and chemical properties of synthesized compound (3a-3l)

Code	Chemical Formula	Colour	Rf value	% yield
3a.	$C_{25}H_{15}F_4N_3S_2$	Beige solid	0.55	57.85%
3b	$C_{25}H_{15}F_3N_3S_2Cl$	Pale yellow solid	0.61	68.0%
3c	$C_{25}H_{15}F_3N_3S_2Br$	Light yellow solid	0.52	72%
3d	$C_{25}H_{14}F_{3}N_{3}S_{2}Cl_{2}$	Yellow	0.89	70%
3e.	$C_{25}H_{14}F_4N_3S_2Br$	Brown solid	0.72	63%
3f	$C_{25}H_{14}F_3N_3S_2BrCl$	Light yellow solid	0.68	78%
3g	$C_{25}H_{14}F_3N_3S_2Br_2$	Dark yellow	0.91	64%
3h	$C_{25}H_{13}F_3N_3S_2BrCl_2$	Pale yellow	0.77	76%
3i	$C_{25}H_{14}F_4N_3S_2Cl$	Dark yellow solid	0.61	59%
3ј	$C_{25}H_{14}F_3N_3S_2Cl_2$	Light yellow solid	0.80	66%
3k	$C_{25}H_{14}F_3N_3S_2BrCl$	Yellow solid	0.59	52%
31	$C_{25}H_{13}F_3N_3S_2Cl_3$	Reddish brown	0.85	56%

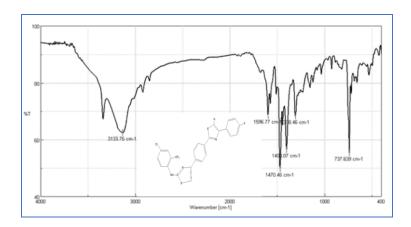


Figure 1: FTIR Spectra of compound 3i

Table 5: Inter	pretation	of FTIR	Spectra	of com	pound 3i
I abre et Inter	pretation		Specia		pound of

S. No.	Frequency	Assignment
1	686	C-S-C stretching
2	827	C-F
3	1470	C-N stretching
4	1596	N=O stretching
5	1596 and 1570	Phenothiazine ring
6	2920, 1512, 737	Aromatic stretching
7	3340	NH stretching

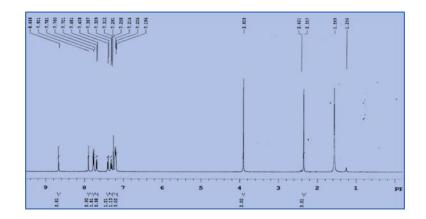


Figure 2: NMR Spectra of Compound 3i

S. No.	δ value (in ppm)	Assignment
1.	8.66	s, 1H
2.	7.90	d, <i>J</i> = 8.0 Hz, 2H
3.	7.77	d, <i>J</i> = 8.4 Hz, 2H
4.	7.69	d, <i>J</i> = 8.4 Hz, 1H
5.	7.20	d, <i>J</i> = 4.8 Hz, 3H
6.	3.90	s, 3H
7.	2.35	s, 3H

Table 6: Interpretation of proton NMR spectra of compound 3i

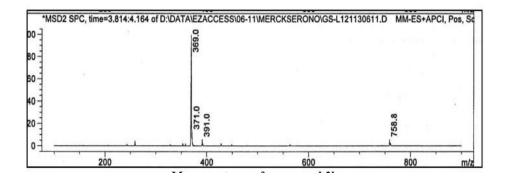


Figure 3: Mass spectra of Compound 3i

S. No.	m/z	Assignment
1.	368.07	Calcd
2.	369	$[M+H]^+$

Table 8: Antibacterial screening of titled compounds by disc diffusion method for gram-
positive and gram-negative bacteria

Code	ZONE OF INHIBITION in mm							
	М.	B.	S.	S.	S.	P.	Е.	V.
	luteus	subtili	aureus	albus	paratyphii	auroginosa	coli	cholera
		s						
3a	6	10	10	8	11	12	10	13
3b	5	7	7	9	9	7	8	9
3c	9	11	9	10	10	11	11	12
3d	7	10	6	11	11	13	12	11
3e	8	8	7	7	8	8	9	7
3f	12	11	11	11	13	14	12	13
3g	7	9	6	8	8	8	7	6
3h	5	8	8	6	9	8	6	7
3i	11	13	13	12	12	12	13	11
3ј	8	7	8	8	7	9	6	8
3k	6	8	9	7	7	8	8	9
31	8	6	9	7	8	6	9	8
Ciprof	17	19	16	17	20	18	19	19
loxaci								
n								

3a-3l = synthesized compounds in the concentration of 10 µg/disc, Ciprofloxacin in the concentration of 5 µg/disc

Code	ZONE OF INHIBITION in mm						
Coue	A. niger	T. rubrum	C. albicans	M. purpurea			
3a	10	11	12	13			
3b	8	8	9	10			
3c	12	13	12	11			
3d	14	12	11	10			
3e	9	8	9	8			
3f	12	11	10	12			
3g	8	8	9	9			
3h	7	7	8	8			
3i	14	13	14	13			
3ј	10	9	8	8			
3k	9	9	8	9			
31	8	8	9	9			
Clotrimazole	20	18	13	17			

Table 0. Antifum cal	a ama amin a of titled	a a man a ma da ba diaa	diffusion mothed
Table 9: Antifungal	screening of filled	- componnas by aisc	antinsion mernoa
Tuble / Thinkingu	ber coming or three	compounds by disc	annasion meenoa

3a-3l= synthesized compounds in the concentration of $10 \mu g/disc$

	MIC (µg/ml)							
Code	M. luteus	B. subtili	S. aureus	S. albus	E. coli	S. paratyphii	P. auroginosa	V. cholera
3a	125	62.5	62.5	125	250	125	250	125
3b	62.5	250	125	125	62.5	250	125	125
3c	125	62.5	250	250	125	125	250	250
3d	62.5	250	62.5	62.5	250	125	125	125
3e	125	125	125	125	62.5	62.5	62.5	62.5
3f	250	125	125	250	250	250	125	250
3g	250	62.5	250	125	125	62.5	250	125
3h	62.5	250	62.5	62.5	125	125	125	125
3i	250	125	250	250	250	125	62.5	250
3j	125	250	125	125	62.5	62.5	250	62.5
3k	125	62.5	125	62.5	125	125	125	125
31	125	62.5	125	250	62.5	62.5	62.5	62.5
Ciprof loxaci n	62.5	125	62.5	125	125	125	62.5	250

 Table 10: Minimum inhibitory concentration of synthesized compounds against positive

 and gram-negative bacteria by broth dilution method

Table 11: Minimum inhibitory concentration of synthesized compounds against fungi by
broth dilution method

Code	MIC (µg/ml)						
Coue	A. niger	T. rubrum	C. albicans	M. purpurea			
3a	62.5	125	62.5	125			
3b	125	125	250	62.5			
3c	125	62.5	125	250			
3d	250	125	125	250			
3e	125	250	250	125			
3f	250	250	250	125			
3g	62.5	125	62.5	250			
3h	125	125	125	125			
3i	125	250	62.5	125			
3ј	62.5	62.5	125	250			
3k	62.5	125	125	250			
31	125	62.5	250	125			
Clotrimazole	125	125	250	250			

A series with a total of 12 compounds of phenyl amino thiazole derivatives have been synthesized. The derivatives were synthesized by a three-step reaction as described in Scheme-I. In the first step, 4-[(2-substituted amino) thiazol-4-yl)] benzonitrile has been prepared from 4(a-bromoacetyl) benzonitrile and thiourea. Finally,, a series of substituted

phenylaminothiazole have been synthesized by cyclocondensation of various compounds in presence of ethanol.

All the titled compounds yielded the products in the range of 52-80%. The melting points of the compounds 3a-31 were observed in the range of 170-256 °C. All compounds showed only one spot of migration from the origin on TLC plates, thereby confirming their purity.

All the newly synthesized compounds were characterized by FTIR and selected compounds were characterized by 1HNMR and selected compounds by Mass spectroscopic method.

All the titled compounds were investigated for antibacterial activity against NCIM and MTCC bacterial strains (four Gram-positive and four Gram-negative) by disc diffusion method to determine the zone of inhibition and broth dilution method to determine the minimum inhibitory concentration.

Among the series of compounds, 3a-3i showed significant antibacterial activity against Gram negative organisms P. aeruginosa and V. cholerae. This may be due to the presence of electron withdrawing chloro phenyl group on ring nitrogen of thiazole moiety, which is in correlation with reported thiazole moiety possess antimicrobial action or the presence of thiazole could be another important reason for its antibacterial activity. The compounds 3f and 3i, showed mild activity against all the Gram positive and Gram-negative microbes. Compound 3i showed comparable activity as that of standard ciprofloxacin against E.coli (zone of inhibition 13 mm, MIC 250 μ g/ml) and this activity may be due to the presence of electron-donating phenolic hydroxy group on the thiazole nucleus.

All the titled compounds were investigated for antifungal activity against four MTCC fungal strains by disc diffusion method to determine the zone of inhibition and broth dilution method to determine the minimum inhibitory concentration.

Among the first series of compounds, 3i was found to show excellent activity against C. albicans, M. purpurea (14 mm, 12 mm zone of inhibition respectively, MIC 250 μ g/ml). The compound is expected to be highly active due to the presence highly electronegative nitro group in addition to the presence of thiazole linked with urea moiety.

4. CONCLUSION

The compound 3i exhibited significant antimycobacterial activity at a concentration of 10 μ g/ml. The results obtained encouraged us to pursue further research in the synthesis of many derivatives of titled compounds to perform in vivo trials in experimental animals to broaden their pharmacological assessment and receptor interactions.

5. REFERENCES:

1. I. Ali, W.A. Wani, A. Khan, A. Haque, A. Ahmad, K. Saleem, N. Manzoor, Synthesis and synergistic antifungal activities of a pyrazoline based ligand and its copper (II) and nickel (II) complexes with conventional antifungals, Microb. Pathogen. 53 (2012) 66-73.

2. R.V. Ragavan, V. Vijayakumar, N.S. Kumari, Synthesis and antimicrobial activities of novel 1,5diarylpyrazoles, Eur. J. Med. Chem. 45 (2010) 1173-1180.

3. N.C. Desai, A.H. Makwana, K.M. Rajpara, Synthesis and study of 1,3,5-triazine based thiazole derivatives as antimicrobial agents, J. Saudi Chem. Soc. 20 (2016) S334-S341.

4. D. Luanicer, L. A. Mitscher, The Organic Chemistry of Drug Synthesis, John Wiley and Sons, New York, 1980.

- 5. R. K. Bansal Heterocyclic Chemistry, New Age International Publisher, New Delhi, 2003
- 6. M. J. Rogers, E. Cundliffe, T. F. Mccutchan, Antimicrobial agents and chemotherapy. 42, 715, (1966).
- 7. S. R. Pattan, N. S. Dighe, S. A. Nirmal, A. N. Merekar, R. B. Laware, H. V. Shinde, D. S. Musmade, Asian J. Research Chem. 2(2), 196, (2009).
- 8. R. N. Sharma, F. P. Xavier, K. K. Vasu, S. C. Chaturvedi, S. S. Pancholi, Journal of enzyme inhibition and medicinal chemistry. 24, 890, (2009).
- 9. I. Argyropoulou, A. Geronikaki, P. Vicini, F. Zanib, Arkivoc. VI, 89, (2009).
- 10. H. D. Trautman, L. M. Longe, J. Am. Chem Soc. 70, 3436, (1948).
- 11. A. R. Murray, J. Am. Chem Soc. 71, 3354, (1949).
- 12. P. Bhattacharya, J. T. Leonard, K. Roy, Bioorganic and Medicinal Chemistry. 13, 1159, (2005).
- 13. A. Alemagna, T. Bacchetti, P. Beltrame, Tetrahedron. 24, 3209, (1968).
- 14. H. N. Karade, B. N. Acharya, M. Sathe, M. P. Kaushik, Medicinal Chemistry Research. 17, 19, (2008).
- 15. F. C. Spector, L. H. Liang, G. M. Sivaraja, M. G. Peterson, Journal of virology. 72(9) 6979, (1998)

16. Patel R. B, Desai P. S, Desai K. R, Chikhalia K. H. Synthesis of pyrimidine basedthiozolidinones and azetidinones: Antimicrobial and Antitubercular agents. Indian J Chem.2006; (45B): 773-778.

17. Basawaraj R, Amith L, VijayKumar T, Havangirao M, Upendra C. H. Synthesis and Antitubercular Activities ofAzetidinone and Thiazolidinone Derivatives from 5-Chloro-3-Methylbenzofuran. Inter J ChemTech Research.2010; 2(3): 1764-1770.

18. Arunkumar I. K. S. Synthesis, Antimicrobial and Antitubercular Activities of SomeNovel Trihydroxy Benzamido Azetidin-2-one Derivatives. Tropical J Pharmaceutical Research.2011; 10 (2): 219-229.

19. Dubey A, Srivastava S. K, Srivastava S. D. Conventional and microwave assisted synthesis of 2-oxo-4-substituted aryl-azetidine derivatives of benzotriazole: A new class of biological compounds. Bioorg Med Chem Letters. 2011; (21): 569–573.

20. Dighe R. D, Rohom S. S, Deshpande M. M, Khairnar S. A, Mehetre C. A, Mandlik P. N, Malani R. R. Microwave assisted synthesis and evaluation of isatinyl thiazole derivatives as anti-Mycobacterium tuberculosis agents and d TDP-rhamnose inhibitors. Inter J ResearchPharmaceutical and Biomed.2011; 2(2): 2209-3701.

21. Sharma M. C, Sahu N. K, Kohli D. V, Chaturvedi S. C, Bhat S. S, Chaithanya S. Synthesis, Characterization and Biological activities of some 1-(nicotinylamino)-2- substituted azetidinone-4-ones as potential antibacterial agents. Digest J Nanomaterials and Biostructures.2009; 4(2): 361-367.

22. Sahoo U, Seth A. K, Sen A, Dhanya B, Patel J, Chawla R. Synthesis, and characterization of certain novel azetidine derivatives as antibacterial and antifungal agents. Research JPharmaceutical Biological and Chemical .2010; 1(2): 102.

23. Zarei M, Mohamadzadeh M. 3-Thiolated 2-azetidine: synthesis and in vitro antibacterial and antifungal Activities. Tetrahedron.2011; (67): 5832-5840.

24. Omprakash G. B, Mokalae S. S, Nalwar Y. S , Vibhute Y. B. Microwave assisted and Conventional Synthesis, Characterization and Biological Activity of 2-Azetidinones and 4-Thiozolidinones. J Pharmaceutical and Biomed Sciences.2011; 6(08): ISSN N0-2230-7885.