

Pharmacogenomics in Clinical Practice: Transforming Drug Therapy and Patient Care Outcomes

Prakhar Choudhary*, Dr. Nidhi Namdev

GRY Institute of Pharmacy, Borawan, Khargone, M.P. India.

Received: 15 November 2025

Revised: 29 November 2025

Accepted: 16 December 2025

ABSTRACT

Pharmacogenomics (PGx), the study of how genetic variations influence drug response, is emerging as a cornerstone of precision medicine. Its integration into clinical practice aims to optimize therapeutic efficacy, reduce adverse drug reactions (ADRs), and personalize patient care. This review examines the scientific principles of pharmacogenomics, current clinical applications, implementation frameworks, technological and ethical considerations, and future directions in precision therapeutics. Evidence from global initiatives and landmark clinical trials demonstrates the significant impact of genotype-guided prescribing on patient outcomes. Despite barriers related to cost, clinician education, test interpretation, and health equity, pharmacogenomics is steadily transitioning from research to routine care. Continued efforts in integration, decision-support infrastructure, and population-based sequencing promise to accelerate its adoption and enhance personalized drug therapy worldwide.

Keywords: Pharmacogenomics, Precision medicine, Genotype.

1. INTRODUCTION

Interpatient variability in drug response remains one of the greatest challenges in modern medicine. Conventional prescribing assumes average drug efficacy and safety across populations, disregarding genetic variability that influences absorption, distribution, metabolism, and excretion (ADME) pathways. This leads to frequent therapeutic failures, unpredictable toxicity, and preventable hospitalizations. ADRs account for a substantial global health burden, representing one of the top ten causes of mortality in some countries and costing billions of dollars annually in healthcare expenditures.[1]

Pharmacogenomics seeks to align drug therapy with a patient's genomic profile by identifying genetic markers that influence drug targets, metabolic pathways, and transport mechanisms. With the advent of next-generation sequencing (NGS), bioinformatics, and robust clinical guidelines from organizations such as CPIC and DPWG, pharmacogenomics is rapidly moving into routine patient care.[2,3] Its transformative potential lies in improving therapeutic precision while reducing trial-and-error prescribing.

2. SCIENTIFIC BASIS OF PHARMACOGENOMICS

Pharmacogenomic differences arise primarily from genetic polymorphisms—most often single nucleotide polymorphisms (SNPs)—affecting the pharmacokinetic and pharmacodynamic pathways of medications.

2.1 Genetic Variability in Drug-Metabolizing Enzymes:

The cytochrome P450 (CYP450) enzyme superfamily, responsible for metabolism of ~70–80% of commonly used medications, exhibits significant genetic variation. Key enzymes include:

- CYP2D6**

Metabolizes ~25% of all drugs including antidepressants, antipsychotics, opioids, and β-blockers. Over 100 known allelic variants exist, leading to phenotypes from *poor metabolizer* (PM) to *ultra-rapid metabolizer* (UM).[4]

- CYP2C19**

Critical in metabolism of clopidogrel, PPIs, and SSRIs. Loss-of-function alleles such as *CYP2C19* 2 and 3 impair activation of clopidogrel, increasing cardiovascular risk.[5]

- **CYP2C9**

Influences metabolism of warfarin, NSAIDs, antiepileptics. *CYP2C9* 2 and 3 reduce enzymatic function, warranting adjusted dosing to prevent toxicity.[6]

- **CYP3A5 and CYP3A4**

Important for immunosuppressants (tacrolimus), benzodiazepines, and statins. *CYP3A5* expression varies significantly across ethnicities.[7]

2.2 Drug Transporter Genes:

- **SLCO1B1**

Encodes hepatic transporter OATP1B1. The *SLCO1B1* 5 allele is strongly associated with simvastatin-induced myopathy.[8]

- **ABCB1**

Affects the distribution of digoxin, chemotherapeutics, antiepileptics. Variants influence drug levels and response patterns.[9]

2.3 Pharmacodynamic Gene Variants:

- **VKORC1**

Major determinant of warfarin sensitivity; *VKORC1* -1639G>A polymorphism significantly reduces dose requirements.[10]

- **HLA Gene Variants**

HLA alleles predict severe drug reactions:

- *HLA-B*57:01 → abacavir hypersensitivity
- *HLA-B*58:01 → allopurinol-induced Stevens–Johnson syndrome
- *HLA-B*15:02 → carbamazepine-induced SJS/TEN, especially in Asian populations [11]

3. CLINICAL APPLICATIONS OF PHARMACOGENOMICS

Pharmacogenomics is now used across multiple specialties and drug classes.

3.1 Cardiovascular Medicine:

- **Clopidogrel and CYP2C19**

Patients with *CYP2C19* loss-of-function alleles show reduced conversion of clopidogrel to its active form, resulting in higher rates of stent thrombosis and myocardial infarction.[12] CPIC recommends alternative antiplatelet therapy (e.g., prasugrel, ticagrelor) for PMs and IMs.[3]

- **Warfarin and VKORC1 / CYP2C9**

Genotype-guided warfarin dosing improves anticoagulation stability and reduces bleeding risk.[13] The FDA label includes pharmacogenomic dosing recommendations.

- **Statins and SLCO1B1**

Patients with the *SLCO1B1* 5 allele are at increased risk of simvastatin-induced myopathy. Switching to pravastatin or rosuvastatin is recommended.[14]

3.2 Oncology:

- **DPYD and Fluoropyrimidines (5-FU, Capecitabine)**

DPYD variants impair degradation of 5-FU, causing severe toxicity. *DPYD* testing before therapy reduces toxicity and treatment-related mortality.[15]

- **TPMT and NUDT15 with Thiopurines**

Variants in *TPMT* and *NUDT15* predispose patients to myelosuppression during treatment with azathioprine and mercaptopurine.[16]

- **EGFR, KRAS, and ALK in Targeted Cancer Therapy**

These biomarkers guide use of tyrosine kinase inhibitors in lung cancer and colorectal cancer.[17]

3.3 Psychiatry and Behavioral Medicine:

- **Antidepressants (SSRIs, TCAs)**

CYP2D6 and CYP2C19 polymorphisms influence metabolism of SSRIs (escitalopram, sertraline) and TCAs. PGx-guided therapy improves remission rates in major depression.[18]

- **Antipsychotics**

CYP2D6 affects metabolism of risperidone and haloperidol, impacting risk of extrapyramidal symptoms.[19]

3.4 Infectious Diseases:

- **Abacavir and HLA-B*57:01**

Preemptive testing virtually eliminates hypersensitivity reactions to abacavir.[20]

- **Isoniazid and NAT2**

Slow acetylators are at increased risk of hepatotoxicity; genotyping is increasingly being considered in some regions.[21]

3.5 Pain Management:

- **Opioids (Codeine, Tramadol) and CYP2D6**

UMs risk opioid toxicity; PMs experience no analgesic benefit.[22]

- **NSAIDs and CYP2C9**

Poor metabolizers have heightened risk of NSAID-induced gastrointestinal toxicity.[6]

4. IMPLEMENTATION OF PHARMACOGENOMICS IN CLINICAL PRACTICE

4.1 Preemptive vs. Reactive Testing

- **Reactive Testing**

- Ordered when a drug is prescribed
- Suitable for high-risk drugs
- Delays treatment due to lab turnaround time

- **Preemptive Testing**

- Involves multigene panel testing before drug exposure
- Stores lifelong data in HER
- Cost-effective for patients on multiple chronic medications

Large-scale preemptive programs, such as the eMERGE-PGx project, have shown positive clinical impact and cost efficiency.[23]

4.2 Clinical Decision Support Systems (CDS)

EHR-integrated CDS tools provide drug–gene interaction alerts, recommended dose modifications, and alternative therapies. They increase clinician adherence to PGx guidelines and reduce prescribing errors.[24]

4.3 Health-System Implementation Models

- Pharmacogenomics Clinics**

Dedicated clinics guide interpretation and therapeutic recommendations.

- Multidisciplinary Precision Medicine Teams**

Involving pharmacists, geneticists, clinicians, informaticians, and ethicists.

- Hospital-Wide Initiatives**

Integrated pathways for cardiology, oncology, psychiatry, and primary care have shown successful adoption.

5. IMPACT ON PATIENT OUTCOMES

5.1 Reduction of Adverse Drug Reactions

Clinical studies show that PGx-guided prescribing can reduce ADRs by 30–50% for certain drug classes.[25]

5.2 Improved Treatment Efficacy

Genotype-guided antiplatelet therapy reduces cardiovascular events; personalized antidepressant therapy improves treatment remission.[12,18]

5.3 Cost-Effectiveness

Cost reductions stem from:

- Prevention of ADR-related hospitalizations
- More efficient therapy
- Reduced therapeutic failures

Studies estimate savings of several thousand dollars per patient in high-risk therapeutic areas.[26]

5.4 Enhanced Patient Satisfaction and Medication Adherence

Patients demonstrate greater adherence when they understand how genetics influences drug response, leading to better clinical outcomes.[27]

6. CHALLENGES IN CLINICAL IMPLEMENTATION

6.1 Variable Strength of Evidence

Not all gene–drug interactions have robust clinical evidence. Many associations are still under investigation.

6.2 Clinician Knowledge Gaps

Surveys show that fewer than 20% of clinicians feel confident interpreting PGx results.[28]

6.3 Ethical, Legal, and Social Implications (ELSI)

Major concerns include:

- Privacy of genetic data
- Potential discrimination
- Informed consent complexities

6.4 Health Equity and Population Diversity

Most genomic data is derived from European populations, limiting relevance for underrepresented groups.[29]

6.5 Cost and Reimbursement

The cost of testing varies widely, and reimbursement policies remain inconsistent across regions.

7. EMERGING TRENDS AND FUTURE DIRECTIONS

7.1 Whole-Genome and Whole-Exome Sequencing (WGS/WES)

Broad sequencing identifies rare variants not included in standard PGx panels and may soon enable universal preemptive testing.[30]

7.2 Artificial Intelligence and Machine Learning

AI-driven models are improving prediction of complex drug response patterns and integrating multi-omic datasets (genomics, metabolomics, proteomics).[31]

7.3 Pharmacogenomics for Polypharmacy and Geriatric Care

Older adults on multiple medications are particularly vulnerable to ADRs; PGx-guided management may significantly reduce drug interactions.[32]

7.4 Direct-to-Consumer (DTC) Genetic Testing

Companies like 23andMe offer limited PGx services, raising concerns about accuracy, interpretation, and lack of clinical oversight.[32]

7.5 Population-Wide Genomic Initiatives

Programs such as the UK Biobank and All of Us Research Program are generating PGx data on millions of individuals, accelerating discovery and implementation.[33]

8. CONCLUSION

Pharmacogenomics is transforming drug therapy by enabling personalization of treatment based on genetic profiles. Evidence demonstrates significant improvements in drug efficacy, reductions in toxicity, and overall enhancement of patient outcomes. Clinical integration continues to advance with the support of guidelines, decision-support tools, and growing global initiatives. Despite challenges—including cost, clinician education, and ethical considerations—pharmacogenomics is poised to become a standard component of precision medicine. Future developments in sequencing technologies, AI, and large-scale population genomics will further accelerate its adoption and expand its clinical utility.

9. REFERENCES

1. Pirmohamed M et al. Adverse drug reactions as cause of admission to hospital. *BMJ*. 2004;329:15–9.
2. Relling MV, Evans WE. Pharmacogenomics in the clinic. *Nature*. 2015;526:343–50.
3. Clinical Pharmacogenetics Implementation Consortium (CPIC). CPIC Guidelines. Available at: cpicpgx.org.
4. Gaedigk A. The CYP2D6 gene locus: genetic variation and functional genomics. *Front Pharmacol*. 2018;9:1–21.
5. Mega JL et al. Cytochrome P450 polymorphisms and clopidogrel efficacy. *N Engl J Med*. 2009;360:354–62.
6. Lee CR et al. Clinical outcomes of CYP2C9-guided NSAID therapy. *Clin Pharmacol Ther*. 2004;75:181–91.

7. Birdwell KA et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP3A5 and tacrolimus dosing. *Clin Pharmacol Ther.* 2015;98:19–24.
8. Link E et al. SLCO1B1 variants and statin-induced myopathy. *N Engl J Med.* 2008;359:789–99.
9. Kim RB. ABC transporters in drug disposition and pharmacogenomics. *Pharmacol Rev.* 2002;54:561–99.
10. Wadelius M et al. Warfarin and VKORC1 polymorphisms. *Pharmacogenomics J.* 2005;5:262–70.
11. Chen P et al. HLA-B*1502 and carbamazepine-induced SJS/TEN. *N Engl J Med.* 2011;364:1134–43.
12. Wallentin L et al. CYP2C19 genetic variants and antiplatelet response. *Lancet.* 2010;376:309–17.
13. Pirmohamed M et al. A randomized trial of genotype-guided warfarin dosing. *N Engl J Med.* 2013;369:2294–303.
14. SEARCH Collaborative Group. Simvastatin and SLCO1B1. *N Engl J Med.* 2008;359:789–99.
15. Henricks LM et al. DPYD genotype-guided dosing reduces fluoropyrimidine toxicity. *Lancet Oncol.* 2018;19:1459–67.
16. Relling MV et al. TPMT and NUDT15 genotyping for thiopurine therapy. *Clin Pharmacol Ther.* 2019;105:1095–110.
17. Kris MG et al. EGFR and KRAS mutations in lung cancer therapy. *JAMA.* 2011;305:1445–52.
18. Greden JF et al. Pharmacogenomics-guided antidepressant therapy outcomes. *J Psychiatr Res.* 2019;111:59–67.
19. van der Weide J et al. CYP2D6 and risperidone metabolism. *Clin Pharmacokinet.* 2006;45:453–60.
20. Mallal S et al. HLA-B*57:01 and abacavir hypersensitivity. *N Engl J Med.* 2008;358:568–79.
21. Kinzig-Schippers M et al. NAT2 genotype-guided isoniazid dosing. *Clin Pharmacol Ther.* 2005;78:50–9.
22. Crew KR et al. Codeine and CYP2D6 guideline. *Clin Pharmacol Ther.* 2012;91:321–6.
23. Cavallari LH et al. eMERGE-PGx project outcomes. *Clin Pharmacol Ther.* 2017;102:493–502.
24. Hicks JK et al. Integration of CDS systems for pharmacogenomics. *Am J Health Syst Pharm.* 2016;73:1967–76.
25. Van Driest SL et al. PGx-guided therapy reduces ADRs. *Clin Pharmacol Ther.* 2014;95:410–6.
26. Verbelen M et al. Cost-effectiveness of pharmacogenomics. *Pharmacogenomics J.* 2020;20:123–36.
27. Schmidlen T et al. Patient satisfaction with PGx testing. *Patient Educ Couns.* 2019;102:2180–8.
28. Stanek EJ et al. Adoption of pharmacogenomics in practice. *Genet Med.* 2012;14:595–604.
29. Petrovski S, Goldstein DB. Unequal representation in genomic databases. *Nat Rev Genet.* 2016;17:81–3.
30. Dewey FE et al. Clinical interpretation of whole genome sequencing. *JAMA.* 2014;311:1035–45.
31. Beam AL, Kohane IS. AI in clinical genomics. *Nat Biomed Eng.* 2018;2:612–3.
32. Hilmer SN. Pharmacogenomics in geriatric polypharmacy. *Clin Pharmacol Ther.* 2020;108:635–8.
33. Tandy-Connor S et al. False positives in DTC genetic testing. *Genet Med.* 2018;20:1515–21.

How to cite this article:

Prakhar Choudhary et al. Ijppr.Human, 2025; Vol. 31 (12): 514-519.

Conflict of Interest Statement: All authors have nothing else to disclose.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.