

Review on Cellular and Molecular Pathogenesis of PCOD

Mohanraj U¹, Madhuranthagan M¹, Dr. R. Suresh^{1*}, Dr. Neelaveni Thangavel², Vignesh Kumar K¹

¹ Department of Pharmacology, RVS College of Pharmaceutical Sciences, Coimbatore, Tamil Nadu, Affiliated to The Tamil Nadu Dr MGR Medical University, Guindy, Chennai – 600032, Tamil Nadu, India.

² Department of Pharmaceutical Chemistry, RVS College of Pharmaceutical Sciences, Coimbatore, Tamil Nadu, Affiliated to The Tamil Nadu Dr MGR Medical University, Guindy, Chennai – 600032, Tamil Nadu, India.

Received: 15 November 2025

Revised: 29 November 2025

Accepted: 16 December 2025

ABSTRACT

Polycystic ovarian syndrome (PCOS) is a common condition in women of reproductive age. Its cause is not fully known, but anti-Müllerian hormone (AMH) seems to play an important role. Women with PCOS usually have higher levels of AMH. High AMH prevents normal follicle growth, which leads to anovulation. It also lowers estrogen and raises androgen levels, which can make insulin resistance worse. Because of this, AMH is linked to both reproductive and metabolic issues in PCOS. High AMH often connects to poor responses to treatments like weight loss, ovulation induction, and ovarian drilling. Patients generally show improvement after treatment when AMH levels are lower. Understanding how AMH works in PCOS could help develop new treatments and assist doctors in selecting better options for women with the condition.

Keywords: AMH, Androgen, PCOS, Anovulation, Insulin Resistance, Reproductive, Metabolic Issues

INTRODUCTION

Polycystic ovary syndrome (PCOS) is the most common hormone disorder in women who can have children. It affects about 5-10% of this group and is the main cause of ovulation problems [1]. The Rotterdam 2003 consensus states that to diagnose PCOS, at least two of the following three criteria must be present: irregular or absent ovulation, signs of high androgen levels, and/or polycystic ovaries as seen on an ultrasound [2]. PCOS often comes with insulin resistance, obesity, and changes in hormone secretion. Stein and Leventhal first described this syndrome in 1935 in women who experienced missed periods, infertility, excessive hair growth, and polycystic ovaries [3]. Ovarian hyperthecosis and higher androgen production are central to the hormonal issues associated with it. Both genetic and environmental factors are thought to play a role in its development [4]. Families often see clusters of cases, and certain genetic pathways have been linked to the metabolic and hormonal problems in PCOS [5]. Environmental factors also matter, as shown in studies with rhesus monkeys where exposure to androgens before birth resulted in PCOS-like traits in female offspring [6]. Despite years of research, the exact cause of PCOS is still unclear.

Anti-Müllerian hormone (AMH) is released by granulosa cells and plays a key role in the development of follicles [7]. Women with PCOS have serum AMH levels that are two to three times higher than those of women with normal ovulation, which reflects the larger number of small antral follicles [8]. It remains uncertain if AMH is just a marker of PCOS or if it actively contributes to its development. This review will look at the role of AMH in ovarian function and the increasing evidence linking AMH to the development of PCOS. A better understanding of this relationship may lead to new treatment options for PCOS.

1. AMH and Ovarian Function

Anti-Müllerian hormone (AMH), also known as Müllerian inhibiting substance (MIS), is a glycoprotein hormone in the transforming growth factor- β family [9]. Unlike other members of this family, AMH is mainly produced in the gonads and has an effect on reproductive organs [10]. The AMH gene is found on chromosome 19 [11]. In women, AMH is released by granulosa cells, decreases with age, and becomes undetectable after menopause [12]. Its levels stay relatively stable throughout the menstrual cycle [13].

AMH also contributes to male embryonic development by stopping Müllerian duct formation. If AMH is absent or if there are defects in its receptor, the uterus and Fallopian tubes can persist [14].

During folliculogenesis, AMH is most abundant in pre-antral and small antral follicles (≤ 4 mm) and decreases in larger follicles, vanishing beyond 8 mm [15]. This drop is key for selecting the dominant follicle [16]. AMH slows down follicle growth: mice without AMH show quicker folliculogenesis [17]. In lab settings, AMH lowers FSH-stimulated aromatase activity and estradiol production [18].

AMH functions through type I and type II receptors that activate Smad signaling [19]. These receptors are present in granulosa cells, and AMHRII has also been found in theca and luteal cells, indicating paracrine signaling [20]. Overall, AMH stops premature follicle recruitment. As follicles grow larger, AMH decreases, which allows for FSH sensitivity, estrogen production, and ovulation (Figure 1).

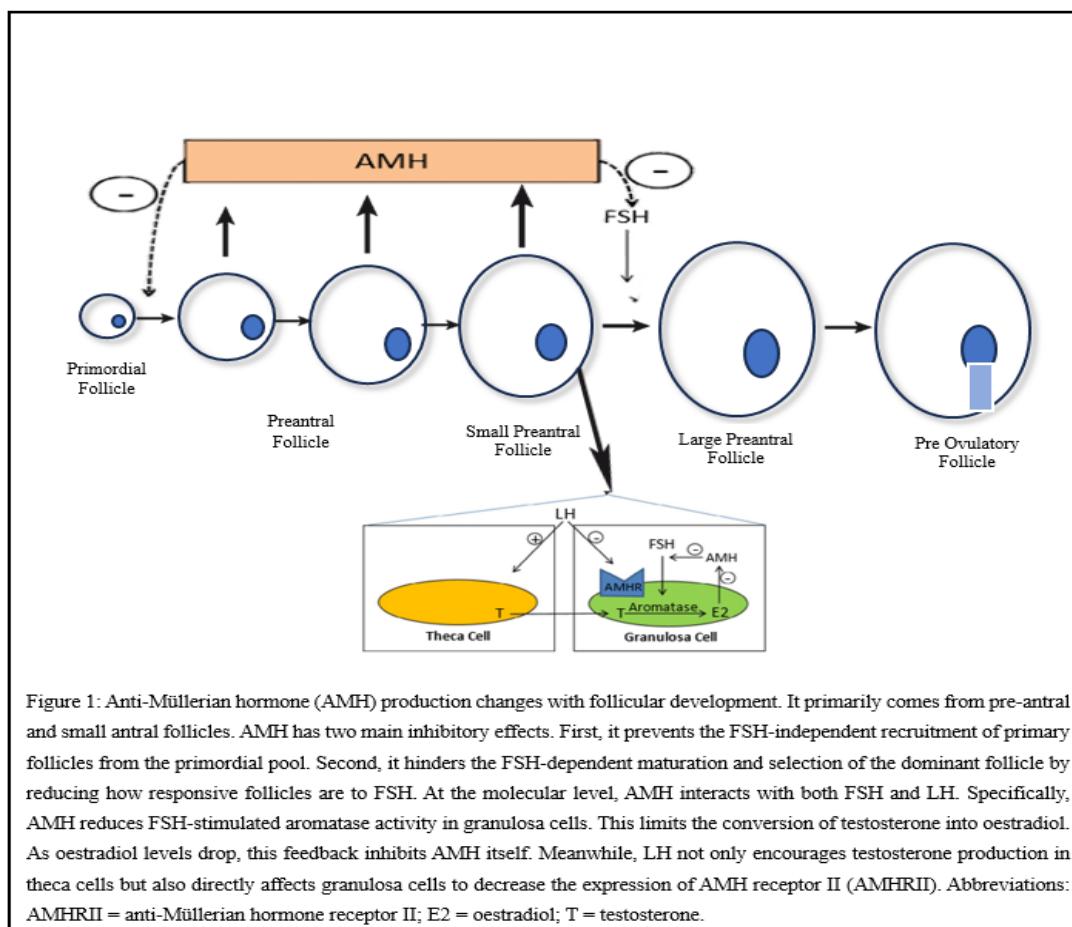


Figure 1: Anti-Müllerian hormone (AMH) production changes with follicular development. It primarily comes from pre-antral and small antral follicles. AMH has two main inhibitory effects. First, it prevents the FSH-independent recruitment of primary follicles from the primordial pool. Second, it hinders the FSH-dependent maturation and selection of the dominant follicle by reducing how responsive follicles are to FSH. At the molecular level, AMH interacts with both FSH and LH. Specifically, AMH reduces FSH-stimulated aromatase activity in granulosa cells. This limits the conversion of testosterone into oestradiol. As oestradiol levels drop, this feedback inhibits AMH itself. Meanwhile, LH not only encourages testosterone production in theca cells but also directly affects granulosa cells to decrease the expression of AMH receptor II (AMHRII). Abbreviations: AMHRII = anti-Müllerian hormone receptor II; E2 = oestradiol; T = testosterone.

2. Role of AMH in PCOS pathogenesis

PCOS ovaries have more pre-antral and small antral follicles, indicating a halt in follicle growth when AMH levels are normally highest [21]. Consequently, serum AMH levels are consistently higher in women with PCOS compared to those with normal ovaries [8]. In the follicular fluid, AMH levels in anovulatory PCOS women are about five times greater than in ovulatory women [22]. Pellatt et al. (2007a) demonstrated that granulosa cells from anovulatory PCOS produce about 75 times more AMH than normal granulosa cells. Catteau-Jonard et al. (2008) confirmed the increased AMH mRNA expression in polycystic ovaries. These findings imply that the overproduction of AMH in PCOS results from both the larger quantity of follicles and the higher AMH output per granulosa cell. Notably, AMH levels correlate with the severity of PCOS symptoms such as irregular cycles, hyperandrogenism, and polycystic ovarian morphology [23]. This supports the notion that AMH is not only a marker but also plays a role in the development of PCOS.

3. AMH and Hyperandrogenism in PCOS

Androgens are made in theca interna cells and changed into estrogens in granulosa cells by the action of aromatase [24]. Luteinizing hormone (LH) encourages this process by increasing androgen production in theca cells. In PCOS, higher serum AMH levels have been linked to increased androgen levels like testosterone and androstenedione [25]. This suggests that AMH may play a role in

hyperandrogenism. One theory is that AMH lowers aromatase activity in granulosa cells, which limits estrogen production and leaves more androgens unconverted [16]. Experimental studies support this: AMH decreased aromatase activity and mRNA expression in rat fetal ovaries [26]. In human granulosa-like cells, AMH also stopped CYP19 gene expression, which reduced FSH-induced estradiol production [18].

AMH may also influence theca cells, as AMHRII receptors are found there, possibly leading to improper androgen production in PCOS [27]. This suppression of FSH-induced aromatase activity may help explain abnormal follicular development in PCOS [28]. Genetic evidence backs this connection: Kevenaar et al. (2008) discovered that the AMH gene Ile49Ser variant was tied to androgen levels in PCOS, likely affecting aromatase regulation. All in all, current evidence points to AMH being a factor in hyperandrogenism in PCOS, although other metabolic and hormonal elements also play significant roles.

4. AMH and Metabolic manifestation

Women with PCOS have a two- to three-fold higher risk of metabolic syndrome compared to healthy women of the same age group [29]. The most common metabolic issues are insulin resistance (IR) and obesity. These problems are more severe in anovulatory PCOS and also influence androgen regulation [30]. Although obesity worsens IR, women with PCOS are still more insulin resistant than expected based on obesity alone [31]. Some studies suggest that IR might affect AMH levels and contribute to hyperandrogenism [32], but the evidence is mixed. La Marca et al. (2004b) first reported a positive link between AMH and IR as measured by HOMA-IR. Similar findings were reported by Fonseca et al. (2014), Nardo et al. (2009), and Skalba et al. (2011). In contrast, other studies found no association, including those by Eldar-Geva et al. (2005), Caglar et al. (2013), Cassar et al. (2014), and Pigny et al. (2003). Several studies in Asian women also found no connection between AMH and IR [33], possibly due to their leaner body composition. Conflicting results may reflect differences in study populations. Since AMH has been variably correlated with BMI [34], obesity might act as a confounding factor. Larger studies that control for BMI and other variables are needed to clarify the relationship between AMH and IR.

Oxidative stress and advanced glycation end products (AGE) have also been linked to PCOS [35]. AGE are formed by nonenzymatic glycation of proteins, lipids, and nucleic acids, a process that speeds up in diabetes and IR [36]. Increased AGE levels have been found in the serum and ovaries of women with PCOS [35]. AGE can disrupt insulin signaling in granulosa cells [37]. Unlike RAGE, which mediates harmful effects, soluble RAGE (sRAGE) binds AGE in circulation, reducing their impact [38]. Diamanti-Kandarakis et al. (2009) reported a positive relationship between AMH and AGE, especially in anovulatory PCOS, suggesting they may both play a role in ovulatory dysfunction. Irani et al. (2014b, 2015) showed that vitamin D supplementation reduced AMH and increased sRAGE, leading to improvements in PCOS features. Merhi et al. (2015) found that AGE exposure in cumulus cells increased AMHRII expression and boosted AMH-induced signaling, effects reversed by vitamin D. Overall, these findings suggest that AGE enhance AMH activity in the ovary, contributing to ovulatory dysfunction and metabolic issues like IR. However, it remains unclear whether AMH directly affects insulin action locally or systemically, and this requires further investigation.

5. AMH and Infertility

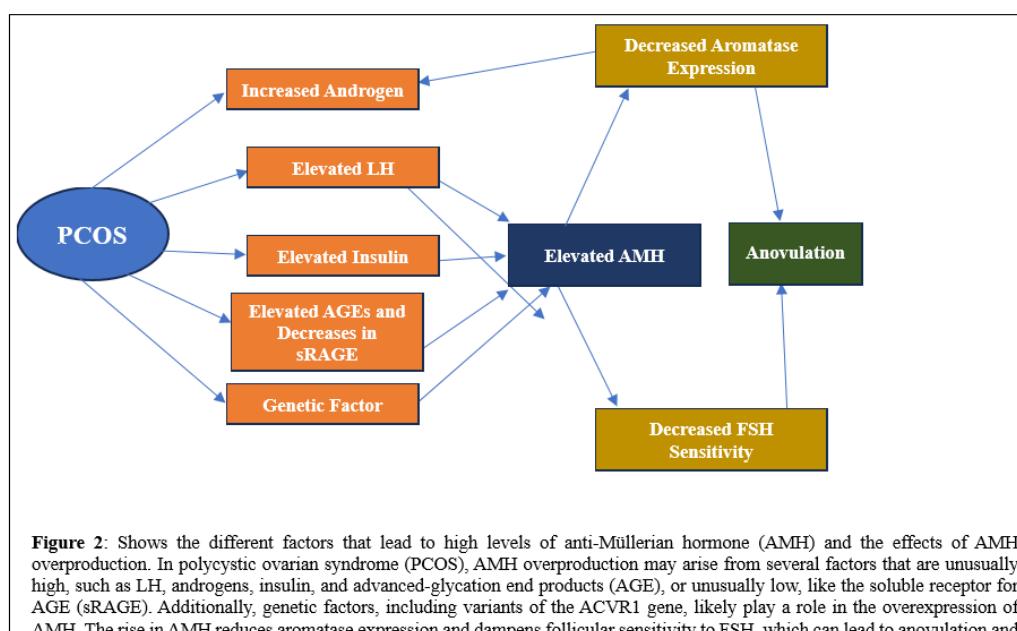
Several studies suggest that AMH may affect subfertility related to PCOS, though the evidence is mixed. Weight loss programs for overweight and obese women with PCOS indicated that lower initial AMH levels predicted better menstrual and ovulation responses [39]. Similarly, ovulation induction studies showed that women with lower pretreatment AMH had better responses to clomiphene citrate. Thresholds like <1.2 ng/ml or <3.4 ng/ml predicted higher ovulation and pregnancy rates [40]. These results suggest that very high AMH levels, which indicate excessive granulosa cell activity, may hinder follicle formation and lower response to basic fertility treatments.

Evidence from IVF studies also highlights the complicated role of AMH in fertility with PCOS. Desforges-Bullet et al. (2010) found higher AMH levels in the follicular fluid of anovulatory PCOS women compared to those who ovulated, but lower levels in women who became pregnant. While AMH is a well-known predictor of ovarian response and oocyte yield [41], its link to outcomes like implantation and live birth remains uncertain. A meta-analysis by Iliodromiti et al. (2014) concluded that AMH was a weak predictor of live birth, and more data on PCOS populations continues to be inconsistent.

Further studies show this variability. Aleyasin et al. (2011) found AMH was linked to oocyte number and embryo transfer but not to pregnancy outcomes. Kaya et al. (2010) reported that day-3 AMH ≥ 3.2 ng/ml predicted clinical pregnancy with moderate accuracy, while Xi et al. (2012) saw lower implantation rates in women with high AMH despite similar fertilization outcomes. Sahmay et al. (2013) found no significant link between AMH and pregnancy rates in 150 PCOS women undergoing IVF. A meta-analysis by Tal et al. (2015) confirmed that AMH had weaker predictive value for pregnancy in PCOS compared to women with reduced ovarian reserve. This might be explained by the fact that higher AMH in PCOS shows increased production per follicle

rather than a greater number of follicles [42], connecting AMH more closely to disease severity than to reproductive success [43]. A clearer understanding of this relationship could help clarify the clinical importance of measuring AMH in PCOS subfertility.

6. AMH and folliculogenesis in PCOS


Previous studies suggest that AMH interferes with FSH activity in the ovaries, inhibiting folliculogenesis [44]. High AMH levels have been linked to ovulatory dysfunction. Laven et al. (2004) showed that anovulatory women, with or without PCOS, had higher AMH levels compared to ovulatory women, and AMH correlated with menstrual cycle length. Pellatt et al. (2010) proposed that PCOS can be split into ovulatory and anovulatory types based on AMH, with anovulatory PCOS showing 18-fold higher concentrations. Pigny et al. (2003) found that AMH positively correlated with small antral follicle count but negatively with FSH, suggesting that AMH contributes to follicular arrest. Dewailly et al. (2007) reported that excess 2–5 mm follicles were associated with more severe menstrual disorders, particularly amenorrhea. Increased AMH has also been observed in adolescents with oligomenorrhea [45], and Tal et al. (2014) showed its strong ability to predict amenorrhea. Overall, these findings suggest that excess AMH-producing small follicles create a microenvironment that limits FSH action and leads to anovulation, though direct evidence is still lacking.

7. Factors contributing to AMH overproduction

The reasons for high AMH in PCOS are still unclear, but several factors may play a role. Serum AMH has been linked to LH and androgen levels [46]. Pellatt et al. (2007a) showed that LH increased AMH production four-fold in granulosa cells from PCOS ovaries, but not in normal ovaries. Pierre et al. (2013) found that LH boosted AMH expression in granulosa cells of anovulatory PCOS women, suggesting LH contributes to AMH overproduction and follicular arrest. Androgens also promote early follicle growth [47], which might increase AMH production. However, Carlsen et al. (2009) found that long-term suppression of androgens did not lower AMH, indicating that other mechanisms likely maintain high AMH levels in PCOS.

7.1 Insulin and genetic influences

Insulin resistance may also raise AMH levels. La Marca et al. (2004a, 2004b) reported a link between HOMA-IR and AMH in women with PCOS, while Nardo et al. (2009) found AMH positively associated with fasting insulin in both PCOS and non-PCOS women. Park et al. (2010b) suggested that insulin might directly influence AMH secretion or indirectly increase AMH through androgen production. Genetic factors may also contribute. Kevenaar et al. (2009) identified an association between ACVR1 gene variants, AMH levels, and folliculogenesis, implicating ALK2 signaling in ovulatory disturbances. Stubbs et al. (2005) found fewer primordial follicles stained for AMH in anovulatory PCOS compared to ovulatory women but similar staining in pre-antral and antral follicles. This indicates reduced inhibition of primordial follicle recruitment in anovulatory PCOS, leading to the buildup of small follicles and AMH overproduction (Figure 2).

Conclusion

AMH is significant in PCOS. It stops normal follicle growth, which results in anovulation. It may also play a role in high androgen levels and insulin resistance. High AMH levels are associated with a poor response to treatments like weight loss, ovulation induction, and ovarian drilling. In contrast, lower AMH levels often show improvement after therapy. More research is needed to fully understand how AMH affects PCOS and to investigate new treatment options.

REFERENCES

1. Diamanti-Kandarakis E, Kouli CR, Bergiele AT, Filandra FA, Tsianateli TC, Spina GG, Zapanti ED, Bartzis MI. A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. *The journal of clinical endocrinology & metabolism*. 1999 Nov 1;84(11):4006-11.
2. ESHRE TR, ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. *Fertility and sterility*. 2004 Jan 1;81(1):19-25.
3. Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. *American journal of obstetrics and gynecology*. 1935 Jan 1;29(2):181-91.
4. Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary syndrome in a Dutch twin-family study. *The Journal of Clinical Endocrinology & Metabolism*. 2006 Jun 1;91(6):2100-4.
5. Escobar-Morreale HF, Luque-Ramírez M, San Millán JL. The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. *Endocrine reviews*. 2005 Apr 1;26(2):251-82.
6. Abbott MB. On definitions. *Journal of Hydroinformatics*. 2002 Mar 1;4(2):i-xxvii.
7. Visser JA, de Jong FH, Laven JS, Themmen AP. Anti-Müllerian hormone: a new marker for ovarian function. *Reproduction*. 2006 Jan 1;131(1):1-9.
8. Laven JS, Mulders AG, Visser JA, Themmen AP, De Jong FH, Fauser BC. Anti-Müllerian hormone serum concentrations in normoovulatory and anovulatory women of reproductive age. *The Journal of Clinical Endocrinology & Metabolism*. 2004 Jan 1;89(1):318-23.
9. Cate RL, Mattaliano RJ, Hession C, Tizard R, Farber NM, Cheung A, Ninfa EG, Frey AZ, Gash DJ, Chow EP, Fisher RA. Isolation of the bovine and human genes for Müllerian inhibiting substance and expression of the human gene in animal cells. *Cell*. 1986 Jun 6;45(5):685-98.
10. Massagué J, Chen YG. Controlling TGF-β signaling. *Genes & development*. 2000 Mar 15;14(6):627-44.
11. Cohen-Haguenauer O, Picard JY, Mattei MG, Serero S, Van Cong N, De Tand MF, Guerrier D, Hors-Cayla MC, Josso N, Frézal J. Mapping of the gene for anti-Müllerian hormone to the short arm of human chromosome 19. *Cytogenetic and Genome Research*. 1987 May 9;44(1):2-6.
12. Ueno S, Kuroda T, Maclaughlin DT, Ragin RC, Manganaro TF, Donahoe PK. Müllerian inhibiting substance in the adult rat ovary during various stages of the estrous cycle. *Endocrinology*. 1989 Aug 1;125(2):1060-6.
13. Cook CL, Siow Y, Taylor S, Fallat ME. Serum müllerian-inhibiting substance levels during normal menstrual cycles. *Fertility and sterility*. 2000 Apr 1;73(4):859-61.
14. Rey R, Lukas-Croisier C, Lasala C, Bedecarrás P. AMH/MIS: what we know already about the gene, the protein and its regulation. *Molecular and cellular endocrinology*. 2003 Dec 15;211(1-2):21-31.
15. Stubbs SA, Hardy K, Da Silva-Buttkus P, Stark J, Webber LJ, Flanagan AM, Themmen AP, Visser JA, Groome NP, Franks S. Anti-müllerian hormone protein expression is reduced during the initial stages of follicle development in human polycystic ovaries. *The Journal of Clinical Endocrinology & Metabolism*. 2005 Oct 1;90(10):5536-43.
16. Pellatt L, Hanna L, Brincat M, Galea R, Brain H, Whitehead S, Mason H. Granulosa cell production of anti-Müllerian hormone is increased in polycystic ovaries. *The Journal of Clinical Endocrinology & Metabolism*. 2007 Jan 1;92(1):240-5.
17. Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, Matzuk MM, Rose UM, de Jong FH, Uilenbroek JT, Grootegoed JA, Themmen AP. Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. *Endocrinology*. 2001 Nov 1;142(11):4891-9.
18. Grossman MP, Nakajima ST, Fallat ME, Siow Y. Müllerian-inhibiting substance inhibits cytochrome P450 aromatase activity in human granulosa lutein cell culture. *Fertility and sterility*. 2008 May 1;89(5):1364-70.
19. La Marca A, Volpe A. Anti-Müllerian hormone (AMH) in female reproduction: is measurement of circulating AMH a useful tool?. *Clinical endocrinology*. 2006 Jun;64(6):603-10.
20. Hanna L, Pellatt L, Rice S, Whitehead S, Mason H. Anti-Müllerian hormone (AMH) production by and amh type-II receptor (AMHRII) in normal human ovaries. *InEndocrine Abstracts* 2006 Dec 4 (Vol. 11). Bioscientifica.
21. Franks S, McCarthy MI, Hardy K. Development of polycystic ovary syndrome: involvement of genetic and environmental factors. *International journal of andrology*. 2006 Feb;29(1):278-85.
22. Das M, Gillott DJ, Saridogan E, Djahanbakhch O. Anti-Müllerian hormone is increased in follicular fluid from unstimulated ovaries in women with polycystic ovary syndrome. *Human Reproduction*. 2008 Sep 1;23(9):2122-6.

23. Homburg R, Ray A, Bhide P, Gudi A, Shah A, Timms P, Grayson K. The relationship of serum anti-Müllerian hormone with polycystic ovarian morphology and polycystic ovary syndrome: a prospective cohort study. *Human Reproduction*. 2013 Apr 1;28(4):1077-83.

24. ERICKSO GF, Hsueh AJ, Quigley ME, Rebar RW, Yen SS. Functional studies of aromatase activity in human granulosa cells from normal and polycystic ovaries. *The Journal of Clinical Endocrinology & Metabolism*. 1979 Oct 1;49(4):514-9.

25. Cassar S, Teede HJ, Moran LJ, Joham AE, Harrison CL, Strauss BJ, Stepto NK. Polycystic ovary syndrome and anti-Müllerian hormone: role of insulin resistance, androgens, obesity and gonadotrophins. *Clinical endocrinology*. 2014 Dec;81(6):899-906.

26. Di Clemente N, Goxxe B, Rémy JJ, Cate R, Josso N, Vigier B, Salesse R. Inhibitory effect of AMH upon the expression of aromatase and LH receptors by cultured granulosa cells of rat and porcine immature ovaries. *Endocrine*. 1994;2:553-8.

27. Ingraham HA, Hirokawa Y, Roberts LM, Mellon SH, McGee E, Nachtigal MW, Visser JA. Autocrine and paracrine Müllerian inhibiting substance hormone signaling in reproduction. *Recent Progress in Hormone Research*. 2000 Jan 1;55:53-67.

28. Jonard S, Dewailly D. The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. *Human reproduction update*. 2004 Mar 1;10(2):107-17.

29. Apridonidze T, Essah PA, Iuorno MJ, Nestler JE. Prevalence and characteristics of the metabolic syndrome in women with polycystic ovary syndrome. *The Journal of Clinical Endocrinology & Metabolism*. 2005 Apr 1;90(4):1929-35.

30. Conway GS, Jacobs HS. Clinical implications of hyperinsulinaemia in women. *Clinical endocrinology*. 1993 Dec 1;39(6):623-32.

31. Dunaif A, Segal KR, Shelley DR, Green G, Dobrjansky A, Licholai T. Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. *Diabetes*. 1992 Oct 1;41(10):1257-66.

32. Baillargeon JP, Nestler JE. Polycystic ovary syndrome: a syndrome of ovarian hypersensitivity to insulin?. *The Journal of Clinical Endocrinology & Metabolism*. 2006 Jan 1;91(1):22-4.

33. Chun S. 1-h Postprandial glucose level is related to the serum anti-Müllerian hormone level in women with polycystic ovary syndrome. *Gynecological Endocrinology*. 2015 Oct 3;31(10):815-8.

34. Fleming R, Seifer DB, Frattarelli JL, Ruman J. Assessing ovarian response: antral follicle count versus anti-Müllerian hormone. *Reproductive biomedicine online*. 2015 Oct 1;31(4):486-96.

35. Diamanti-Kandarakis E, Katsikis I, Piperi C, Kandarakis E, Piouka A, Papavassiliou AG, Panidis D. Increased serum advanced glycation end-products is a distinct finding in lean women with polycystic ovary syndrome (PCOS). *Clinical endocrinology*. 2008 Oct;69(4):634-41.

36. Unoki H, Yamagishi SI. Advanced glycation end products and insulin resistance. *Current Pharmaceutical Design*. 2008 Apr 1;14(10):987-9.

37. Diamanti-Kandarakis E, Chatzigeorgiou A, Papageorgiou E, Koundouras D, Koutsilieris M. Advanced glycation end-products and insulin signaling in granulosa cells. *Experimental Biology and Medicine*. 2016 Jul;241(13):1438-45.

38. Kalea AZ, Schmidt AM, Hudson BI. RAGE: a novel biological and genetic marker for vascular disease. *Clinical Science*. 2009 Apr 1;116(8):621-37.

39. Thomson RL, Buckley JD, Moran LJ, Noakes M, Clifton PM, Norman RJ, Brinkworth GD. The effect of weight loss on anti-Müllerian hormone levels in overweight and obese women with polycystic ovary syndrome and reproductive impairment. *Human reproduction*. 2009 Aug 1;24(8):1976-81.

40. Mahran A, Abdelmeged A, El-Adawy AR, Eissa MK, Shaw RW, Amer SA. The predictive value of circulating anti-Müllerian hormone in women with polycystic ovarian syndrome receiving clomiphene citrate: a prospective observational study. *The Journal of Clinical Endocrinology & Metabolism*. 2013 Oct 1;98(10):4170-5.

41. La Marca A, Giulini S, Tirelli A, Bertucci E, Marsella T, Xella S, Volpe A. Anti-Müllerian hormone measurement on any day of the menstrual cycle strongly predicts ovarian response in assisted reproductive technology. *Human reproduction*. 2007 Mar 1;22(3):766-71.

42. Pellatt L, Hanna L, Brincat M, Galea R, Brain H, Whitehead S, Mason H. Granulosa cell production of anti-Müllerian hormone is increased in polycystic ovaries. *The Journal of Clinical Endocrinology & Metabolism*. 2007 Jan 1;92(1):240-5.

43. YH L. Antimüllerian hormone and polycystic ovary syndrome. *Fertil Steril*. 2011;96:230-5.

44. Pellatt L, Rice S, Mason HD. Anti-Müllerian hormone and polycystic ovary syndrome: a mountain too high?. *Reproduction*. 2010 May 1;139(5):825-33.

45. Park AS, Lawson MA, Chuan SS, Oberfield SE, Hoeger KM, Witchel SF, Chang RJ. Serum anti-müllerian hormone concentrations are elevated in oligomenorrheic girls without evidence of hyperandrogenism. *The Journal of Clinical Endocrinology & Metabolism*. 2010 Apr 1;95(4):1786-92.

46. Tal R, Seifer DB, Kanimov M, Malter HE, Grazi RV, Leader B. Characterization of women with elevated antimüllerian hormone levels (AMH): correlation of AMH with polycystic ovarian syndrome phenotypes and assisted reproductive technology outcomes. *American journal of obstetrics and gynecology*. 2014 Jul 1;211(1):59-e1.

47. Weil S, Vendola K, Zhou J, Bondy CA. Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. *The Journal of Clinical Endocrinology & Metabolism*. 1999 Aug 1;84(8):2951-6.

How to cite this article:

Dr. R. Suresh et al. Ijppr.Human, 2025; Vol. 31 (12): 595-601.

Conflict of Interest Statement: All authors have nothing else to disclose.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

	<p>Dr. R. Suresh – Corresponding Author. Professor cum Vice Principal, Department of Pharmacology. RVS College of Pharmaceutical Sciences, Sulur, Coimbatore, 641 402.</p>
	<p>Mohanraj U. Department of Pharmacology. RVS College of Pharmaceutical Sciences, Sulur, Coimbatore, 641 402.</p>
	<p>Dr. Neelaveni Thangavel. Principal, Department of Pharmaceutical Chemistry. RVS College of Pharmaceutical Sciences, Sulur, Coimbatore, 641 402.</p>
	<p>Madhuranthagan M. Assistant Professor, Department of Pharmacology. RVS College of Pharmaceutical Sciences, Sulur, Coimbatore, 641 402.</p>
	<p>Vignesh Kumar K. Department of Pharmacology. RVS College of Pharmaceutical Sciences, Sulur, Coimbatore, 641 402.</p>