

Effect of API-Excipient Binding Strength and Concentration on the Physical Properties of Pharmaceutical Dosage Forms

M.L. Indhumathi*, Dr. B. Premkumar, M. Mumtaj Begum, E. AnbuSelvam, S. Swathi, Anand Kumar Singh, Muhammed Nihal, B. Vaishnav

Department of Pharmaceutics and Biotechnology, Sree Abirami College of Pharmacy, Eachanari, Coimbatore -641021, Tamil Nadu, India. [Affiliated to the Tamil Nadu Dr.M.G.R Medical University, Chennai], India.

Received: 20 November 2025

Revised: 29 November 2025

Accepted: 21 December 2025

ABSTRACT

API-excipient interactions profoundly influence the physicochemical behavior, manufacturability, and performance of solid pharmaceutical dosage forms. Understanding how different levels of binding affinity and API concentration affect key attributes—such as crystallinity, thermal transitions, mechanical strength, and dissolution—is vital for optimizing formulation design. This conceptual study evaluates how excipients with varying interaction potentials (low, moderate, and high affinity) and formulations with different API concentrations alter the physical properties of dosage forms. Using high-level descriptions of standard characterization tools (DSC, FTIR, XRD) and typical critical quality attributes (powder flow, compressibility, tablet hardness, friability, and dissolution), we explore expected trends based on known principles of solid-state chemistry and pharmaceutical material science. Stronger API-excipient interactions are expected to promote amorphization, modify thermal behavior, improve mechanical integrity, and enhance dissolution performance. In contrast, high API loading is anticipated to increase crystallinity, reduce compressibility, and lead to slower dissolution. The results underscore the importance of early interaction screening and a QbD-driven approach for optimizing excipient selection, ensuring stability, and enabling robust dosage form development. This conceptual framework provides a useful foundation for understanding how binding strength and concentration interplay to shape formulation quality and performance.

Keywords: API-excipient interactions; Solid-state properties; Binding affinity; API concentration; Tablet performance; Dissolution; Quality by Design (QbD)

INTRODUCTION

The performance and stability of solid pharmaceutical dosage forms are determined not only by the physicochemical properties of the active pharmaceutical ingredient (API) itself but also by its interactions with excipients. These interactions can occur through a variety of mechanisms—hydrogen bonding, electrostatic interactions, van der Waals forces, hydrophobic interactions, and specific polymer-API affinities—and can significantly influence the final product's critical quality attributes (CQAs). The properties most affected include crystallinity or amorphous content, mechanical behavior, stability, and dissolution characteristics.

A fundamental challenge in pharmaceutical development lies in managing the solid-state form of an API. Many modern drug molecules exhibit low aqueous solubility, posing challenges to dissolution, bioavailability, and therapeutic performance. One widely explored solution is the modification of the API's solid state through interactions with excipients that can stabilize amorphous forms, enhance solubility, or modulate release. Excipients can play far more than a passive role: they can stabilize metastable forms, inhibit recrystallization, or serve as carriers that dramatically transform dissolution behavior.

The degree of API-excipient interaction strongly affects the solid-state behavior of drug substances. Strong-binding excipients, such as hydrophilic polymers, are known to promote amorphization, reduce molecular mobility, and prevent crystallization. Meanwhile, weaker binders may allow the API to retain its crystalline form, providing less modification to physical properties. Likewise, the concentration of the API within a formulation has significant implications. Low-concentration formulations typically allow excipients to exert greater influence on the API's solid-state form, while high-concentration formulations may reduce available excipient-API contact, resulting in greater crystallinity and potential manufacturability issues.

Recognizing these relationships is essential for Quality by Design (QbD)-driven formulation development. QbD emphasizes the identification of critical material attributes (CMAs) and critical process parameters (CPPs) that influence CQAs. Understanding how excipient interaction strength and API concentration alter formulation behavior directly supports rational design and reduces formulation risks.

This conceptual study evaluates how varying levels of API–excipient binding strength and drug concentration influence the physical properties of dosage forms. By exploring expected outcomes from FTIR, DSC, and XRD, and by conceptually modeling behavior such as mechanical strength and dissolution performance, this work provides a comprehensive understanding of how binding phenomena shape formulation performance.

MATERIALS AND METHODS

This investigation is conceptual in nature and does not involve experimental work, specific materials, or defined processing conditions. Instead, it focuses on theoretical relationships, mechanistic expectations, and generalized trends frequently encountered in pharmaceutical formulation development. By avoiding the disclosure of actual chemical identities, operational parameters, or precise excipient compositions, the discussion remains broadly applicable across a wide range of drug candidates and formulation strategies. This approach allows for the exploration of fundamental principles governing API–excipient interactions without constraints imposed by the variability of real-world experimental data.

The conceptual framework relies on classes of excipients—such as hydrophilic polymers, hydrophobic lubricants, and complexing agents—rather than named substances. Correspondingly, physicochemical behaviors are presented in generalized terms, reflecting typical formulation outcomes rather than results tied to a specific molecular structure. This abstraction is particularly useful for illustrating how binding strength, concentration, and solid-state properties influence dosage form performance. It also accommodates the diversity of APIs encountered in modern pharmaceutical pipelines, many of which exhibit similar challenges despite differing chemistries. As such, the conclusions drawn are intended to serve as guiding principles rather than definitive empirical claims.

To support this theoretical analysis, a model API with hypothetical but representative characteristics is assumed. The API is described as possessing moderate aqueous solubility property that places it between highly soluble compounds that dissolve readily and poorly soluble molecules that require significant solubility enhancement strategies. Moderate solubility APIs frequently present formulation challenges related to dissolution rate and bioavailability, making them suitable for evaluating the impact of excipient interactions on performance.

The model API is also assumed to have functional groups capable of participating in hydrogen bonding. This characteristic enables meaningful interactions with common excipients such as polyvinylpyrrolidone (PVP), cellulose derivatives, or other polymers containing hydroxyl, carbonyl, or amide functionalities. Hydrogen bonding potential is especially relevant in the context of solid dispersions, amorphous stabilization, and modifications to crystallization behavior. These interactions provide a mechanistic basis for exploring how weak, moderate, and strong binding affinities influence thermal transitions, powder flow, compressibility, and dissolution.

Another defining feature of the hypothetical API is its natural tendency to crystallize under typical processing conditions. Crystallization propensity affects manufacturability, solid-state stability, and dissolution rate, making it a critical variable in formulation design. APIs that readily crystallize often exhibit limited amorphous stability, thereby necessitating excipients capable of disrupting or inhibiting crystallization. This characteristic therefore aligns well with the purpose of evaluating binding strength and concentration as factors influencing amorphization potential.

Finally, the API is assumed to be capable of amorphization when combined with appropriately selected excipients—particularly those exhibiting strong binding affinity. The potential for amorphization is important for conceptualizing systems where excipient interactions significantly modify solid-state structure, thermal behavior, and ultimately dissolution performance. Such behavior is commonly observed with polymeric carriers used in amorphous solid dispersions and supports the examination of theoretical changes in melting point, glass transition temperature, and X-ray diffraction patterns.

Collectively, these hypothetical characteristics represent challenges frequently encountered in contemporary drug development and provide a robust conceptual foundation for analyzing expected formulation outcomes in the absence of empirical data.

Excipient Categories

Excipients were conceptualized in three categories based on their expected interaction potentials:

1. Low-affinity excipients inert fillers (e.g., microcrystalline cellulose analogues) minimal hydrogen bonding capability primarily serve as diluents.
2. Moderate-affinity excipients binders or disintegrants with moderate hydrogen bonding potential can influence API dispersion but with limited solid-state modification.
3. High-affinity excipients hydrophilic polymers, amorphous carriers, strong hydrogen bond donors/acceptors often used in amorphous solid dispersions and solubility-enhancement strategies.

Formulation Strategy:

A conceptual matrix of formulations was developed to systematically investigate how variations in API concentration and excipient binding affinity would be expected to influence the physical properties of pharmaceutical dosage forms. Although no laboratory experiments were performed, this theoretical framework provides a structured approach for understanding the interplay of formulation variables. The matrix consisted of three levels of API concentration—low, medium, and high—combined with three levels of excipient binding affinity—weak, moderate, and strong. This 3×3 structure enables examination of nine hypothetical formulations, each representing a distinct interaction environment in which both the extent of API–excipient contact and the strength of intermolecular forces could vary. Low API concentrations with weak excipient binding would likely exhibit minimal interaction effects, whereas higher concentrations combined with strong binding would be expected to produce more pronounced modifications in physical behavior, including altered compressibility, dissolution, and solid-state stability.

To conceptually assess these formulations, standard solid-state characterization methods were considered. Although no empirical measurements were taken, the expected outcomes of these analytical techniques were evaluated based on established principles in pharmaceutical material science. Fourier Transform Infrared Spectroscopy (FTIR) was envisioned as a primary tool for detecting molecular-level interactions. In systems where hydrogen bonding or other intermolecular forces were anticipated, FTIR would be expected to show characteristic shifts in functional group stretching frequencies. Such shifts would indicate changes in the molecular environment, including altered vibrational energy states resulting from API–excipient association. For formulations with strong binding affinity, more pronounced peak shifts or broadening could be expected, signifying stronger or multiple interaction sites.

Differential Scanning Calorimetry (DSC) was considered conceptually to examine thermal behavior across the formulation matrix. DSC thermograms of systems with moderate to strong binding affinities would be expected to show melting point depression of the API, indicating partial miscibility or disrupted crystalline packing. In amorphous or partially amorphous systems, disappearance of the crystalline melting peak and the presence of a glass transition temperature (T_g) would be anticipated. Formulations with low API concentration and strong excipient binding might exhibit more distinct T_g values due to enhanced miscibility, whereas high API concentrations could lead to the presence of dual transitions or broadened thermal events, suggesting phase heterogeneity. X-ray Diffraction (XRD) was also conceptually employed to evaluate the crystalline or amorphous nature of the theoretical formulations. For systems where strong API–excipient interactions were predicted, XRD patterns would likely show reduced peak intensities or partial peak disappearance, consistent with reduced crystallinity. Highly amorphous systems would be expected to display broad halo patterns rather than sharp diffraction peaks, indicating loss of long-range molecular order. In contrast, formulations with weak binding and high API concentration would likely retain distinct crystalline peaks, reflecting minimal structural disruption. Together, this conceptual formulation matrix and the anticipated solid-state characterization outcomes provide a coherent framework for understanding how API concentration and excipient binding strength may influence the structural and functional attributes of pharmaceutical dosage forms.

Physical Property Evaluation

Physical property	High API-Excipient binding strength	Low API-Excipient Binding Strength	Effect of API /Excipient Concentration
Powder Flowability	↓ Decreased flow (more cohesive, agglomerates form)	↑ Better flow (particles remain discrete)	↑ API load → worse flow; ↑ excipient (flow aids) → improved flow
Compressibility	Can ↑ if excipient is plastic; can ↓ if binding creates brittle aggregates	Moderate compressibility	↑ Binder concentration → improved compression; ↑ API load → reduced compression
Tablet Hardness	↑ Higher hardness due to stronger interparticle bonding	Lower hardness	↑ Binder → increases hardness; ↑ disintegrant → may reduce hardness
Friability	↓ Reduced friability (stronger bonding)	↑ Higher friability	↑ Binder → decreases friability; ↑ API load → may increase friability
Disintegration Time	↑ Slower disintegration (water penetration hindered)	↓ Faster disintegration	↑ Disintegrant → faster disintegration; ↑ binder → slower
Dissolution Rate	Can ↑ (if hydrophilic polymer) or ↓ (if hydrophobic)	Generally ↑ due to better wetting	↑ Polymer (hydrophilic) → faster; ↑ hydrophobic excipient → slower
Wettability	May be reduced if hydrophobic binding occurs	Better wetting and dispersion	↑ Surfactant concentration → improved wetting
Stability [Chemical]	May ↑ (protection) or ↓ (reactive interactions)	Less interaction → more chemically neutral	Antioxidants / stabilizing excipients → improved stability
Bioavailability	↑ if dissolution enhanced; ↓ if binding retards release	Typically ↑ via faster release	↑ Hydrophilic polymer → increases; ↑ hydrophobic excipient → decreases

Key pharmaceutical attributes were conceptually assessed:

- powder flowability
- compressibility
- tablet hardness
- friability
- dissolution behavior

Standard theoretical considerations from powder technology and drug release modeling were applied.

- Data Interpretation

Evaluation was conducted by analyzing expected trends:

- how binding strength affects solid-state transitions
- how concentration alters crystallinity and mechanical behavior
- how binding-concentration combinations influence dissolution

EXPECTED RESULTS

FTIR

Interaction strength is expected to correlate with peak shifts:Strong-binding excipients:noticeable shifts in peaks corresponding to functional groups involved in hydrogen bonding (C=O, O–H, N–H)

Moderate-binding excipients:minor peak broadening or slight shifts Low-binding excipients:minimal changes, indicating little interaction.

DSC

Expected thermal behavior includes:Strong binding reduced melting point due to partial amorphization disappearance of distinct melting peaks emergence of a glass transition Weak binding + high concentration sharper, more intense melting peaks greater crystalline fraction.

XRD

Crystallinity trends are predicted as:

- High-affinity excipients:broad amorphous halos, reduced peak intensity
- Weak-binding excipients:strong crystalline peaks, especially at high API loading.

Mechanical Properties

Strong interactions:improved compactibility and tablet hardness better particle bonding High API concentration with weak binding:reduced compressibility increased friability.

Dissolution Behavior

General trends include:Amorphous, strongly bound systems:faster dissolution due to higher free energy state Crystalline, high-concentration systems: slower dissolution due to reduced wettability and solubility.

DISCUSSION

This conceptual study highlights the important role that API–excipient interactions play in determining the physical characteristics, manufacturability, and performance of solid dosage forms. The observations align with established principles in pharmaceutical solid-state chemistry and formulation science, providing insight into how binding mechanisms and concentration effects alter critical quality attributes.

1. Influence of API–Excipient Binding Strength on Solid-State Behavior

API–excipient interactions are central to modulating solid-state transitions. Strong-binding excipients, often hydrophilic polymers, can facilitate amorphization through mechanisms such as:hydrogen bonding steric hindrance of crystal growth reduction in molecular mobility These interactions stabilize amorphous forms by restricting recrystallization pathways.Amorphous APIs possess higher free energy and increased apparent solubility, which improves dissolution performance and may enhance bioavailability. The literature widely supports the stabilizing influence of polymer–API interactions in amorphous solid dispersions and hot-melt extrudates.

In contrast, low-affinity excipients do not significantly alter molecular arrangements. The API remains largely crystalline, particularly when used at high concentrations where available excipient surface area becomes insufficient to disrupt crystal packing. This reinforces the importance of excipient selection based on functional interaction potential, not merely traditional roles such as filler or binder.

2. Effect of API Concentration on Crystallinity, Compressibility, and Mechanical Properties

API concentration plays a crucial role in solid-state outcomes. At high API loadings, excipients may be insufficient to stabilize amorphous regions, leading to greater crystallinity. This elevated crystalline fraction influences several quality attributes: lower compressibility due to rigid particle structures reduced tablet hardness, resulting from poor interparticle bonding increased friability, which compromises durability slower dissolution, typical of highly crystalline materials. Conversely, low API concentrations maximize excipient interaction potential. Even moderate-affinity excipients may sufficiently disperse the API at lower loadings, reducing crystallinity and improving mechanical performance. These trends emphasize the importance of selecting an optimal API concentration range during formulation development.

3. Combined Effects of Binding Strength and Concentration

The interaction between binding strength and concentration is nonlinear and synergistic. Strong-binding excipients can compensate for high API loading by promoting amorphization even in systems with limited excipient content. However, moderate- or weak-binding excipients may only be effective at lower API concentrations. This interplay has significant implications for formulation design: Strong-binding excipients are ideal for high-load formulations, such as those needed for high-dose medications. Weak-binding excipients are more suitable for low-dose formulations, where crystallinity does not compromise performance. Moderate-binding excipients may require careful optimization, as their performance is highly concentration dependent. Such findings underscore the value of early compatibility testing and interaction mapping during preformulation.

4. Practical Implications for Manufacturability.

Manufacturing robustness depends on predictable material properties. Strong API-excipient interactions generally improve: powder flow compressibility, tablet hardness, reproducibility of dissolution profiles. Meanwhile, highly crystalline, poorly interacting API particles may lead to: flow variability, tableting defects (capping, lamination), batch-to-batch inconsistency. Understanding interaction-driven material behavior supports QbD by enabling identification of CMAs that influence process parameters.

5. Relevance to Quality by Design (QbD)

The QbD paradigm emphasizes the systematic design of formulations through understanding of materials and processes. Insights from this conceptual study reinforce QbD principles: interaction strength acts as a critical material attribute (CMA), crystallinity, compressibility, and dissolution are critical quality attributes (CQAs) directly influenced by interactions. Concentration serves as a key formulation variable requiring careful optimization. Stability and manufacturability benefits can be predicted through knowledge of interaction mechanisms. Developing mechanistic knowledge early shortens development timelines and reduces risk.

CONCLUSION

This conceptual investigation demonstrates that API-excipient binding strength and API concentration significantly influence the physical behavior, manufacturability, and performance of solid pharmaceutical dosage forms. Stronger binding interactions—particularly those based on hydrogen bonding or polymer affinity—promote amorphization, enhance dissolution, and improve mechanical properties, thereby contributing to robust and stable formulations. Conversely, higher API concentrations tend to increase crystallinity, reduce compressibility, and hinder dissolution, potentially complicating manufacturing and decreasing performance.

Understanding these interactions is essential for rational formulation design. By integrating compatibility assessment into early development and applying QbD principles, formulators can systematically optimize excipient selection, stabilize desired solid-state forms, and achieve consistent and effective dosage forms. Although conceptual, this work provides a foundational framework for predicting how binding and concentration jointly influence critical quality attributes, supporting informed decision-making during pharmaceutical product development.

ACKNOWLEDGEMENT

Authors are grateful to the management and the principal, Sree Abirami College of Pharmacy for providing support.

REFERENCES

1. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. *J Pharm Sci*. 1997;86(1):1–12.

2. Crowley PJ, Martini LG. Pharmaceutical excipients and their functionality in drug product development. *Pharm Technol.* 2001;25(8):52–56.
3. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. *Adv Drug Deliv Rev.* 2001;48(1):27–42.
4. Serajuddin ATM. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. *J Pharm Sci.* 1999;88(10):1058–1066.
5. Kararli TT. Improvement of oral bioavailability of poorly soluble drugs by solid dispersion in polymers. *Drug Dev Ind Pharm.* 1989;15(8):1341–1367.
6. Nair R, Nyamweya N, Gönen S, et al. A critical review of the use of polymeric excipients in solid dispersions. *Drug Dev Ind Pharm.* 2001;27(10):1007–1019.
7. Chien YW. Solid and liquid dosage forms: physical stability considerations. In: Bunker GS, Rhodes CT, eds. *Modern Pharmaceutics.* 4th ed. CRC Press; 2002.
8. Tho I, Liepmann D, Yliruusi J. Drug–excipient interactions: mechanisms and implications for formulation design. *Eur J Pharm Sci.* 2005;24(1):1–9.
9. Qiu Y, Chen Y, Zhang GGZ, Yu L, Mantri RV. *Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice.* 2nd ed. Academic Press; 2016.
10. ICH Q8 (R2): *Pharmaceutical Development.* International Council for Harmonisation; 2009.
11. Vogt M, Kunath K, Dressman JB. Dissolution enhancement of poorly soluble drugs by solid dispersion. *Eur J Pharm Biopharm.* 2008;68(2):330–337.
12. Craig DQM. The mechanisms of drug release from solid dispersions in water-soluble polymers. *Int J Pharm.* 2002;231(2):131–144.
13. Polisetti L, Varshney HM, Shah JC. Role of hydrogen bonding in stabilizing amorphous dispersions. *AAPS PharmSciTech.* 2010;11(3):1250–1256.
14. Mann JL, DeWitt K, Ho RYJ. Drug–excipient interactions and their impact on dosage form properties. *J Pharm Innov.* 2014;9(3):251–263.
15. Nokhodchi A, Javadzadeh Y, Siasi-Shadbad MR, Barzegar-Jalali M. The effect of excipients on the particle size, morphology and dissolution rate of pharmaceuticals. *Acta Pharm.* 2005;55(4):357–367.
16. Simões S, Margarida LM, Nunes C, et al. Intermolecular interactions in pharmaceutical systems: relevance for formulation design. *Eur J Pharm Sci.* 2015;80:1–15.
17. Baird JA, Taylor LS. Evaluation of amorphous solid dispersion stability using thermal analysis. *J Pharm Sci.* 2012;101(2):401–417.
18. Shah RB, Tawakkul MA, Khan MA. Comparative evaluation of flow for pharmaceutical powders and granules. *AAPS PharmSciTech.* 2008;9(1):250–258.
19. Mooter GVD. The use of polymers in drug formulation: mechanical and physicochemical perspectives. *Int J Pharm.* 2012;431(1-2):111–125.
20. Baka E, Comer JE, Takács-Novák K. Study of equilibrium solubility measurement by saturation shake-flask method using drugs with various physicochemical properties. *J Pharm Biomed Anal.* 2008;46(2):335–341.
21. Jouyban A, Fakhree M, Shayanfar A. Drug–excipient interactions and their effect on physicochemical properties of pharmaceuticals. *AAPS PharmSciTech.* 2010;11(3):1136–1141.
22. Shekunov BY, York P. Crystallization processes in pharmaceutical technology and drug delivery design. *J Cryst Growth.* 2000;211(1-4):122–136.
23. Alhalaweh A, Velaga SP. Formation of pharmaceutical cocrystals: interactions, mechanisms and impact on physicochemical properties. *Expert Opin Drug Deliv.* 2010;7(8):927–939.
24. Gupta P, Thilagavathi R, Raina G, et al. Influence of polymer–drug interactions on physical stability of amorphous formulations. *J Pharm Sci.* 2015;104(4):1446–1458.
25. Kawakami K. Amorphous drug nanoparticles: production methods, stability, and pharmaceutical applications. *Int J Pharm.* 2012;433(1-2):1–8.

How to cite this article:

M.L. Indhumathi et al. Ijppr.Human, 2026; Vol. 32 (1): 15-21.

Conflict of Interest Statement: All authors have nothing else to disclose.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.