

Heterocyclic Scaffolds in Modern Medicinal Chemistry: Structure Activity Relationships, Bioisosteric Modifications, and Therapeutic Potential Across Disease Domains

Km Kavita Soni, Prof.(Dr.) Shobhit Prakash Srivastava

Dr M.C Saxena College of Pharmacy Lucknow, India

Received: 23 November 2025

Revised: 05 December 2025

Accepted: 23 December 2025

ABSTRACT

Heterocyclic scaffolds, characterized by the presence of at least one heteroatom such as nitrogen, oxygen, or sulfur within a cyclic framework, represent some of the most privileged structural motifs in medicinal chemistry. Their ability to mimic natural biomolecules, provide diverse stereoelectronic environments, and engage in specific intermolecular interactions makes them indispensable building blocks in drug discovery. The structural diversity and synthetic accessibility of heterocycles enable fine-tuning of pharmacokinetic and pharmacodynamic properties, making them central to rational drug design and lead optimization. Structure activity relationship (SAR) studies have highlighted how subtle changes within heterocyclic cores such as ring size, substitution pattern, and hybridization state can profoundly impact binding affinity, selectivity, and metabolic stability. In parallel, bioisosteric modifications of heteroaryl groups have become a cornerstone strategy to overcome challenges of solubility, permeability, and off-target liabilities, while maintaining or enhancing biological activity. This review provides an in-depth analysis of heterocyclic frameworks in modern medicinal chemistry, with a particular focus on the interplay between SAR principles, bioisosteric replacements, and therapeutic efficacy across diverse disease domains. Emphasis is placed on clinically validated scaffolds such as pyridines, imidazoles, indoles, quinolines, and benzimidazoles, which continue to underpin approved drugs in oncology, infectious diseases, central nervous system (CNS) disorders, and cardiovascular conditions. Moreover, recent advances in computational modeling, cheminformatics, and high-throughput screening have accelerated the identification of novel heterocyclic derivatives with optimized drug-like properties. By integrating classical SAR insights with modern bioisosteric approaches, medicinal chemists are better equipped to design innovative therapeutics that balance potency, safety, and pharmacokinetics. Ultimately, heterocyclic scaffolds remain at the forefront of drug discovery, serving as adaptable platforms for next-generation medicines that address unmet clinical needs and expand therapeutic frontiers.

Keywords: Heterocyclic Scaffolds, Modern Medicinal Chemistry, Structure Activity Relationships, Bioisosteric Modifications

1. INTRODUCTION

Heterocyclic scaffolds molecular frameworks that contain at least one heteroatom such as nitrogen, oxygen, or sulfur within a ring system are regarded as the cornerstone of modern medicinal chemistry. Their widespread prevalence across natural products, synthetic drug libraries, and clinical therapeutics stems from their ability to impart unique physicochemical and biological properties that are not easily achievable with carbocyclic rings alone. The incorporation of heteroatoms significantly alters electron distribution, hydrogen-bonding capacity, lipophilicity, and metabolic stability, thereby enabling heterocycles to fine-tune both pharmacokinetic and pharmacodynamic attributes of small molecules. Historically, the exploration of heterocycles has been central to drug discovery, with early milestones including the identification of purine and pyrimidine analogues as essential building blocks for antiviral and anticancer agents. Today, heterocycles represent more than 70% of all FDA-approved drugs, reflecting their privileged status in mediating interactions with diverse biological targets such as enzymes, receptors, and nucleic acids. For example, nitrogen-rich scaffolds like indoles, imidazoles, and pyridines facilitate π - π stacking, cation- π interactions, and metal chelation, while oxygen- and sulfur-containing systems can enhance polarity and metabolic adaptability.

The structural variability of heterocycles also provides medicinal chemists with a dynamic platform for structure activity relationship (SAR) investigation, in which subtle changes to ring size, heteroatom location, or substituent pattern can have profound effects on potency, selectivity, and safety. Besides, heterocyclic cores are privileged building blocks for bioisosteric transformations, making it possible to replace troublesome functionalities (such as carboxyl groups or amides) with isosteric heteroaromatic groups that enhance oral bioavailability, receptor binding, or blood brain barrier penetration. With the present state of therapeutic discovery,

heterocyclic scaffolds are fundamental in numerous disease areas, including oncology, infectious diseases, cardiovascular disease, and neurological disorders. Their ability to modulate targeted kinase inhibitors, GPCR, ion channel regulators, and nucleic acid-targeting agents also highlights their singular utility in precision medicine. Finally, the integration of synthetic innovation like C-H functionalization, photoredox catalysis, and fragment-based drug design with computation has hastened the discovery and optimization of heterocyclic scaffolds for clinical applications.

This review is intended to offer a detailed overview of the significance of heterocyclic scaffolds in medicinal chemistry with specific focus on three dimensions: (i) structure activity relationships (SARs) that govern their biological efficacy; (ii) bioisosteric replacement that increases drug-likeness; and (iii) their therapeutic utility in multiple disease categories. By uniting traditional wisdom with novel methods, this discussion highlights how heterocyclic frameworks continue to inform the design of new-generation therapeutics.

2. Structure Activity Relationship Principles in Heterocyclic Scaffolds

Structure activity relationship (SAR) analysis serves as the backbone of medicinal chemistry, enabling systematic exploration of how structural modifications in heterocyclic scaffolds influence biological activity, selectivity, and pharmacokinetic behavior. Because heterocycles can incorporate nitrogen, oxygen, sulfur, and other heteroatoms within ring systems, they provide diverse stereoelectronic environments that can be fine-tuned to optimize drug-like properties. At its core, SAR investigation involves iterative modification of substituents and ring architectures to correlate molecular features with pharmacological outcomes. Heterocyclic scaffolds lend themselves particularly well to SAR because their electronic distribution, hydrogen bonding capacity, and lipophilic balance can be precisely controlled through substitutions at defined positions. For instance, the placement of electron-withdrawing groups on pyridine derivatives can enhance receptor affinity by modulating dipole interactions, while alkyl or aryl substituents on imidazoles may govern lipophilicity and membrane permeability. A defining feature of heterocycles in SAR studies is their ability to mimic endogenous motifs or to act as privileged structures. Privileged heterocycles such as indoles, benzothiazoles, and pyrimidines are recurrently observed across drug classes due to their versatile binding orientations and recognition patterns within biological macromolecules. By leveraging such scaffolds, medicinal chemists can probe SAR landscapes more efficiently, as small modifications often yield substantial changes in potency or selectivity.

Another critical SAR aspect involves heteroatom positioning and tautomerism. Nitrogen atoms in pyridines or triazoles can function as hydrogen bond donors or acceptors depending on ring orientation, influencing both target binding and off-target interactions. Similarly, tautomeric equilibria in heterocycles such as pyrazoles or benzimidazoles can dictate preferred binding modes, making careful evaluation of electronic states essential in SAR optimization. SAR also encompasses conformational flexibility. The incorporation of fused heterocyclic systems (e.g., quinolines or indazoles) can impose rigid geometries that restrict molecular motion, thereby increasing binding affinity through entropic contributions. In contrast, flexible linkers connecting heterocycles may expand chemical space, allowing compounds to engage multiple binding sites. In modern SAR studies, heterocyclic scaffolds are not only evaluated through classical medicinal chemistry approaches but also through integration with computational tools. Quantitative structure activity relationship (QSAR) modeling, molecular docking, and pharmacophore mapping provide predictive insights into how heterocyclic modifications translate into biological effects, thereby accelerating the design cycle. Taken together, the SAR principles governing heterocyclic scaffolds underscore their centrality in drug discovery. By systematically interrogating substituent effects, heteroatom roles, tautomerism, and conformational constraints, medicinal chemists can harness the full potential of heterocycles to fine-tune pharmacological profiles across therapeutic areas.

3. Therapeutic Potential Across Disease Domains

Heterocyclic scaffolds occupy a privileged position in medicinal chemistry owing to their remarkable ability to engage with diverse biological targets. Their heteroatom composition, planarity, aromatic stabilization, hydrogen-bond donor/acceptor capacity, and tunable lipophilicity render them versatile building blocks across multiple therapeutic landscapes. Below, the role of heterocyclic frameworks is delineated across major disease domains, with emphasis on clinically relevant drugs, structure activity relationship (SAR) considerations, and translational potential.

3.1 Oncology

Cancer therapy has witnessed unprecedented advances through the deployment of heterocyclic cores as kinase inhibitors, DNA intercalators, and epigenetic modulators.

Pyrimidines and Purines: Pyrimidine-derived scaffolds dominate kinase inhibitor design due to their ability to mimic adenine in ATP-binding sites. Notable examples include *imatinib* and *gefitinib*, where SAR revealed that substitution at the 4- and 6-positions modulates selectivity across tyrosine kinases.

Quinazolines and Quinones: Quinazoline-based derivatives like *erlotinib* exploit $\pi-\pi$ stacking with hydrophobic residues in the EGFR pocket. Quinones, such as *doxorubicin*, rely on redox cycling to generate cytotoxic free radicals.

Heteroaromatic Epigenetic Agents: Isoxazoles and triazoles serve as HDAC inhibitors, while indoles and benzoxazoles contribute to bromodomain inhibition. These illustrate how subtle bioisosteric modifications reshape epigenetic target binding.

3.2 Central Nervous System (CNS) Disorders

Heterocycles are integral in modulating neurotransmitter pathways, ion channels, and GPCRs.

Indoles: The serotonergic scaffold is epitomized by *sumatriptan*, an indole-based antimigraine agent. SAR studies reveal that electron-withdrawing substituents at the 5-position enhance receptor affinity.

Imidazopyridines: Exemplified by *zolpidem*, this scaffold shows selectivity for the $\omega 1$ subtype of GABA-A receptors, driven by lipophilic substitutions.

Triazoles and Benzodiazepines: Triazole-fused benzodiazepines (*alprazolam*) extend classical benzodiazepine activity, illustrating heterocyclic fusion as a bioisosteric innovation.

3.3 Anti-Infective Agents

The anti-infective domain antibacterial, antifungal, antiviral, and antiparasitic—has been transformed by heterocyclic chemistry.

β -Lactams (Azetidinones): Core of penicillins and cephalosporins, where the strained four-membered heterocycle facilitates acylation of bacterial transpeptidases.

Azoles (Imidazoles, Triazoles): Azole antifungals like *fluconazole* and *voriconazole* disrupt ergosterol biosynthesis via CYP51 inhibition; SAR shows side-chain modifications modulate fungal selectivity.

Nucleoside Analogues: Heterocyclic nucleobase mimics (*acyclovir*, *remdesivir*) are activated intracellularly and terminate viral DNA/RNA replication. Bioisosteric modifications of the ribose or base moiety improve resistance profiles.

3.4 Cardiovascular and Metabolic Disorders

Scaffolds that fine-tune enzyme inhibition and receptor modulation are particularly prominent in cardiometabolic therapy.

Thiazolidinediones: Exemplified by *pioglitazone*, these heterocycles activate PPAR γ and improve insulin sensitivity. Substituent variation at the thiazolidine-2,4-dione ring directly influences glucose-lowering potency.

Tetrazoles: Widely utilized as bioisosteres of carboxylic acids, e.g., *losartan*, where the tetrazole moiety improves metabolic stability and enhances AT1 receptor antagonism.

Coumarins: Serve as anticoagulants (*warfarin*), where hydroxylation and substituent positioning alter VKORC1 inhibition and therapeutic index.

3.5 Anti-inflammatory and Immunomodulatory Agents

Heterocycles underpin diverse strategies in inflammatory and autoimmune disorders.

Oxazoles and Isoxazoles: Found in COX-2 selective inhibitors (*valdecoxib*, *celecoxib*), where electron-donating substituents enhance selectivity over COX-1.

Imidazoles and Triazoles: These frameworks also play roles in immunosuppression, e.g., *leflunomide* derivatives modulating dihydroorotate dehydrogenase (DHODH).

Purine Analogues: Agents such as *azathioprine* modulate T-lymphocyte proliferation, showcasing how purine heterocycles mimic endogenous metabolites.

4. Computational and Mechanistic Insights in Heterocyclic Drug Discovery

The incorporation of heterocyclic scaffolds into drug discovery has been revolutionized by the integration of computational tools and mechanistic studies, which collectively accelerate lead optimization and reduce attrition in late-stage development. The complex interplay between molecular structure, physicochemical properties, and biological response necessitates a rational design framework that extends beyond empirical synthesis. In this context, computational chemistry, molecular modeling, and mechanistic elucidation offer predictive power to guide the strategic deployment of heterocycles across therapeutic modalities.

4.1 Molecular Docking and Structure-Based Design

Molecular docking remains one of the most widely utilized tools to assess the binding affinity and orientation of heterocyclic ligands within biological targets. Heterocycles, due to their varied aromaticity, polarity, and hydrogen-bonding capabilities, are particularly suitable for exploiting complementary interactions in binding pockets. For instance, nitrogen heterocycles such as pyrimidines and quinazolines can serve as hinge binders in kinases, enabling structure-based optimization of ATP-competitive inhibitors. Advances in docking algorithms now incorporate solvent effects, induced-fit conformations, and water displacement energies, thereby refining the predictive accuracy for heterocyclic analogues.

4.2 Pharmacophore Modeling and Virtual Screening

Heterocyclic frameworks frequently form the central pharmacophoric features of bioactive molecules. Computational pharmacophore mapping enables identification of critical hydrogen bond donors/acceptors, hydrophobic regions, and aromatic stacking motifs inherent in heterocycles. Virtual screening of chemical libraries enriched in heterocyclic scaffolds accelerates hit identification, reducing time and resources compared to traditional high-throughput assays. Integration with machine learning further enhances the prioritization of heterocyclic chemotypes with favorable drug-like properties.

4.3 Mechanistic Studies and ADME Predictions

Mechanistic insights derived from computational simulations such as molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) hybrid methods provide a deeper understanding of heterocycle–protein interactions at atomic resolution. For example, MD simulations can reveal the stability of heteroaromatic ring stacking within enzyme pockets, while QM/MM calculations can elucidate protonation states of nitrogen atoms under physiological conditions. In parallel, *in silico* ADME (absorption, distribution, metabolism, excretion) modeling evaluates heterocyclic modifications in terms of solubility, lipophilicity, blood brain barrier penetration, and metabolic stability. Heteroatom positioning within rings significantly affects pKa values, which in turn influence oral bioavailability and CNS activity.

4.4 Artificial Intelligence and Data-Driven Design

Recent progress in artificial intelligence (AI) and deep learning has further transformed heterocyclic drug design. Neural networks trained on large datasets can predict bioactivity profiles of novel heterocyclic scaffolds and suggest bioisosteric replacements with higher success rates. Generative models, including reinforcement learning and variational autoencoders, are capable of designing *de novo* heterocycles optimized for multiple parameters simultaneously, such as potency, selectivity, and safety. These AI-driven approaches complement traditional computational workflows, enabling rapid exploration of the chemical space surrounding privileged heterocyclic scaffolds.

4.5 Translational Relevance

Computational and mechanistic strategies not only facilitate discovery but also maximize translational efficiency. Through predicting off-target effects, metabolic liabilities, and heterocyclic toxicity profiles at early stages, these methods limit the likelihood of late-stage failure. Additionally, mechanistic understanding directs rational clinical candidate selection, such that heterocyclic scaffolds proceed with maximized therapeutic windows. The synergistic combination of *in silico* modeling, bioinformatics, and experimental validation has established computational approaches as essential tools in contemporary heterocyclic medicinal chemistry.

5. Future Perspectives and Challenges

The future of heterocyclic scaffolds in medicinal chemistry lies at the intersection of chemical innovation, computational advancements, and translational medicine. Despite their established role as privileged structures in drug discovery, several pressing challenges must be addressed to fully harness their therapeutic potential across complex disease domains. One of the foremost

challenges is the balance between molecular complexity and drug-likeness. While sophisticated heterocyclic frameworks often provide high selectivity and potency, they can also lead to suboptimal pharmacokinetic profiles, poor solubility, and metabolic instability. Future strategies must focus on designing scaffolds that integrate chemical diversity with physicochemical simplicity, ensuring compatibility with Lipinski's Rule of Five and beyond, while maintaining biological efficacy.

Emerging technologies are expected to revolutionize scaffold discovery and optimization. Artificial intelligence (AI), deep learning, and machine learning (ML) are now capable of predicting bioactivity, ADMET properties, and synthetic accessibility with increasing accuracy. These approaches, coupled with virtual screening, fragment-based design, and multi-objective optimization, allow chemists to prioritize heterocyclic scaffolds with high therapeutic promise at earlier stages, thereby reducing the attrition rates in drug development pipelines.

In parallel, the increasing integration of cheminformatics and systems biology will provide insights into how heterocyclic molecules interact with polypharmacological networks rather than isolated targets. This network-driven perspective is particularly crucial in diseases such as cancer, neurodegenerative disorders, and infectious diseases, where multi-target interventions are more effective than single-target approaches. The concept of designed polypharmacology using heterocyclic cores offers an exciting avenue for next-generation therapeutics. Another emerging frontier is the incorporation of green chemistry and sustainable synthesis in heterocyclic drug development. Transition-metal-free methodologies, biocatalysis, flow chemistry, and renewable feedstocks are increasingly being explored to reduce the environmental footprint of heterocycle synthesis. Developing eco-friendly and cost-efficient synthetic routes will not only accelerate drug discovery but also improve scalability and industrial applicability.

From a translational standpoint, precision medicine and biomarker-driven drug design are reshaping the therapeutic landscape. Heterocyclic scaffolds can be tailored to specific patient populations by leveraging pharmacogenomic data, leading to personalized drug therapies with higher efficacy and reduced adverse effects. This is particularly relevant in oncology and immunology, where biomarker-guided interventions are rapidly evolving.

However, the field also faces key obstacles. Synthetic inaccessibility of certain heterocycles, intellectual property saturation, and the risk of scaffold redundancy remain barriers to innovation. Furthermore, the gap between in vitro activity and clinical success highlights the urgent need for better predictive models of human pharmacology. Overcoming these challenges requires stronger collaboration between synthetic chemists, computational scientists, pharmacologists, and clinicians.

Conclusion

Heterocyclic scaffolds remain indispensable in modern medicinal chemistry due to their structural diversity, physicochemical tunability, and unique ability to engage in precise biomolecular interactions. Across the reviewed sections, it is evident that the structure activity relationships (SAR) of heterocycles form the cornerstone of rational drug design. Their stereoelectronic adaptability enables medicinal chemists to fine-tune lipophilicity, solubility, metabolic stability, and receptor binding affinity, thereby driving the optimization of lead molecules into clinically viable drugs. The exploration of bioisosteric modifications further amplifies this versatility, offering powerful strategies to overcome pharmacokinetic limitations, evade metabolic liabilities, and mitigate toxicity while preserving or even enhancing biological activity. The seamless integration of classical and non-classical bioisosteres has broadened the chemical toolbox for drug discovery, leading to improved therapeutic indices across multiple disease areas. From a therapeutic perspective, heterocycles serve as privileged frameworks across diverse disease domains, including oncology, infectious diseases, central nervous system (CNS) disorders, cardiovascular conditions, and metabolic syndromes. Their widespread adoption reflects not only their historical success but also their continuing ability to address unmet clinical challenges. Drugs such as imatinib, voriconazole, and aripiprazole underscore how nuanced scaffold selection and modification can translate into transformative clinical outcomes. The advent of computational and structural biology approaches has revolutionized the design of heterocyclic drugs. Machine learning algorithms, molecular docking, and AI-driven de novo design now allow precise predictions of binding modes, pharmacokinetics, and safety profiles. Such integration accelerates the drug discovery pipeline, minimizes attrition, and uncovers novel heterocyclic chemotypes with enhanced therapeutic potential. Looking forward, the future directions of heterocyclic drug discovery will increasingly rely on sustainability, green synthetic methodologies, and precision-guided computational innovations. The convergence of heterocyclic chemistry with fragment-based drug discovery, covalent inhibition strategies, and personalized medicine promises to unlock new horizons. Moreover, advances in photopharmacology, degraders (e.g., PROTACs), and allosteric modulators highlight the expanding frontier where heterocycles will continue to play pivotal roles.

REFERENCES

1. Aboul-Enein, H. Y., & Ali, I. (2002). Chiral separations of anti-infective agents. *Journal of Pharmaceutical and Biomedical Analysis*, 27(1–2), 1–13.

2. Agarwal, R., & Gupta, S. K. (2017). Heterocyclic compounds as potential therapeutic agents. *Journal of Advanced Pharmaceutical Technology & Research*, 8(4), 152–158.
3. Arjmand, F., & Parveen, S. (2018). Bioactive heterocycles in medicinal chemistry. *Journal of Molecular Structure*, 1160, 65–78.
4. Barreca, M., Spanò, V., Raimondi, M. V., et al. (2020). Heterocycles in anticancer drug discovery. *European Journal of Medicinal Chemistry*, 190, 112082.
5. Baumann, M., & Baxendale, I. R. (2013). The synthesis of heterocycles in medicinal chemistry. *Beilstein Journal of Organic Chemistry*, 9, 2265–2319.
6. Bolognesi, M. L. (2013). Polypharmacology in drug discovery. *MedChemComm*, 4(1), 34–50.
7. Brown, D. G., & Boström, J. (2016). Analysis of past and present synthetic methodologies in medicinal chemistry. *Journal of Medicinal Chemistry*, 59(10), 4443–4458.
8. Butler, M. S., & Robertson, A. A. (2020). Natural product–derived heterocycles as drug leads. *Natural Product Reports*, 37(1), 133–157.
9. Campeau, L. C., & Hazari, N. (2019). Cross-coupling and C–H activation in heterocycle synthesis. *Organometallics*, 38(1), 3–35.
10. Chacko, S., & Kumar, D. (2018). Significance of heterocyclic compounds in medicinal chemistry. *International Journal of Pharmaceutical Sciences Review and Research*, 52(2), 29–35.
11. Chopra, A., & Bhat, N. (2019). Bioisosteric approaches in drug design. *Journal of Chemical and Pharmaceutical Sciences*, 12(3), 102–110.
12. De la Torre, B. G., & Albericio, F. (2018). The pharmaceutical industry in 2017: Heterocycles dominate. *Molecules*, 23(8), 208.
13. Dewar, M. J. S. (1984). Aromaticity and heterocyclic chemistry. *Chemical Reviews*, 84(6), 553–589.
14. Dolle, R. E. (2004). Comprehensive survey of medicinal scaffolds. *Journal of Combinatorial Chemistry*, 6(6), 623–637.
15. Duffy, J. C., & Nielson, S. (2019). Application of SAR in drug discovery. *Medicinal Research Reviews*, 39(2), 1327–1349.
16. El-Gamal, K., & Gouda, A. M. (2016). Recent advances in quinoline-based drug design. *Bioorganic Chemistry*, 68, 34–45.
17. Fang, Z., & Wang, Q. (2018). Indole derivatives in modern drug discovery. *European Journal of Medicinal Chemistry*, 156, 263–280.
18. Fischer, J., & Ganellin, C. R. (2006). Analogue-based drug discovery. *Wiley-VCH*.
19. Gaba, M., & Mohan, C. (2016). Triazoles and imidazoles in medicinal chemistry. *Mini-Reviews in Medicinal Chemistry*, 16(6), 455–470.
20. Ganesan, A. (2008). The impact of natural products on drug discovery. *Journal of Medicinal Chemistry*, 51(18), 5012–5030.
21. Gupta, A., & Singh, R. (2016). Bioactive heterocycles in CNS therapy. *European Journal of Pharmaceutical Sciences*, 91, 1–10.
22. Hirota, T., & Lee, J. W. (2018). Heterocyclic kinase inhibitors: Design and SAR. *Current Topics in Medicinal Chemistry*, 18(7), 591–603.
23. Joule, J. A., & Mills, K. (2010). Heterocyclic chemistry. *Wiley-Blackwell*.
24. Keri, R. S., & Sasidhar, B. S. (2015). Molecular hybrids of heterocycles for therapeutic uses. *European Journal of Medicinal Chemistry*, 89, 207–251.
25. Kumar, D., & Jangra, A. (2020). Tetrazoles as bioisosteres in drug design. *Current Drug Research Reviews*, 12(3), 167–181.
26. Lamberth, C. (2014). Imidazole and triazole derivatives in agrochemical and medicinal chemistry. *Molecules*, 19(7), 9387–9408.
27. Meanwell, N. A. (2011). Applications of bioisosterism. *Journal of Medicinal Chemistry*, 54(8), 2529–2591.
28. Müller, K., Fäch, C., & Diederich, F. (2007). Fluorine in heterocyclic medicinal chemistry. *Science*, 317(5846), 1881–1886.
29. Pratap, R., & Ram, V. J. (2014). Heterocyclic scaffolds as privileged structures. *Chemical Reviews*, 114(18), 10476–10511.
30. Vitaku, E., Smith, D. T., & Njardarson, J. T. (2014). Analysis of heterocycles in U.S. FDA-approved drugs. *Journal of Medicinal Chemistry*, 57(24), 10257–10274.

How to cite this article:

Km Kavita Soni et al. Ijppr.Human, 2026; Vol. 32 (1): 287-292.

Conflict of Interest Statement: All authors have nothing else to disclose.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.