

Artificial Intelligence – Driven Approaches in Pharmaceutical Formulation and Dosage Optimization

Netaji D^{1*}, Gowtham G K², Gnana Marie E³, Vishwanathan N⁴, Dr. Sathish A⁵

^{1,2,3} Postgraduate Research Scholar, GRD College of Pharmacy, Thiruvallur, Affiliated to The Tamil Nadu Dr. M.G.R Medical University, Chennai. India.

⁴Associate Professor, GRD College of Pharmacy, Thiruvallur, Affiliated to The Tamil Nadu Dr. M.G.R Medical University, Chennai. India.

⁵Principal, GRD College of Pharmacy, Thiruvallur, Affiliated to The Tamil Nadu Dr. M.G.R Medical University, Chennai. India.

Received: 23 November 2025

Revised: 05 December 2025

Accepted: 23 December 2025

ABSTRACT

By improving conventional drug formulation and dose calculations, artificial intelligence (AI) is revolutionizing the pharmaceutical sciences. This paper describes how artificial intelligence (AI) technologies, such as machine learning (ML), deep learning (DL), and natural language processing (NLP), can be used to improve pharmaceutical calculations' accuracy, efficiency, and tailored approaches. Pharmacokinetic/pharmacodynamic (PK/PD) modeling, real-time dose changes, formulation design, excipient optimization, and drug property prediction are important uses. Despite improvements, problems with interpretability, data quality, regulatory acceptability, and ethical dilemmas still exist. The analysis highlights developments like AI-assisted 3D printing and wearable technology integration, demonstrating AI's potential to transform medicines and tailored therapies. It also addresses AI's impact on automated decision-making, quality control, and regulatory compliance.

Keywords: Artificial Intelligence, Formulation development, Dose calculations, Natural Language Processing, Deep learning

INTRODUCTION

With its capacity to analyze massive databases and spot trends, artificial intelligence (AI) is being used more and more in pharmaceutical computations. This change leads to more accurate and effective drug formulation and dosage, especially for customized treatment regimens. The review emphasizes how AI may save time and money while enhancing scientific rigor in formulation development and dose determination. In order to facilitate the development of precision medicine, a variety of AI techniques, including artificial neural networks (ANNs) and support vector machines (SVMs), being investigated for their prediction and optimizing capabilities in drug discovery and formulation processes. ^[1, 2]

By combining computational modeling with experimental pharmaceutics, this review explores the revolutionary significance of AI in pharmaceutical formulation and dose calculations. It showcases cutting-edge machine learning methods in dosage design, presents an AI-based formulation-to-dose continuum, and takes ethical and legal frameworks into account for clinical use. ^[3] The majority of AI models are still in the early translational stage with little clinical validation, despite their great prediction powers in preclinical and formulation optimization. In order to create validated, patient-specific dosing strategies and direct stakeholders toward a more knowledgeable and data-driven drug development process, the integration of AI with clinical data is essential.

AI IN PHARMACEUTICAL SCIENCES

Artificial intelligence (AI) refers to systems that carry out tasks like learning and problem-solving that call for human-like intellect. Natural language processing (NLP), deep learning (DL), and machine learning (ML) are important AI systems in the pharmaceutical sciences. ^[4] While deep learning uses multilayered neural networks to analyze complicated patterns, machine learning algorithms such as support vector machines and decision trees identify nonlinear correlations in pharmaceutical data. By improving medication discovery, predictive analytics, real-time data monitoring, formulation optimization, and dose determination, artificial intelligence (AI) achieves compliance levels that are not possible with traditional techniques.

AI in Pharmaceutics

Unsupervised learning is used for clustering without specified labels, supervised learning is used for predictive modeling with labeled datasets, and increasingly, reinforcement learning is used to optimize decision-making processes such as adaptive dosage. These systems support clinical judgments by using rule-based logic to mimic human decision-making. Natural language processing (NLP) in pharmaceutics helps identify drug interactions, dosage patterns, and patient-specific factors influencing pharmaceutical calculations by extracting information from unstructured data sources like electronic health records, scientific literature, and clinical trial reports. ^[5]

Data Requirements and Preprocessing in AI Models

The quality and accessibility of data determine how well AI models work in pharmaceutical sciences. The robustness and interpretability of models are guaranteed by crucial preprocessing procedures like normalization, feature selection, dimensionality reduction, and outlier elimination. The model's ability to represent complicated pharmacological actions is improved by integrating several data sources, such as clinical data and molecular descriptors. Additionally, researchers can exploit sensitive patient data while retaining secrecy by using federated learning and privacy-preserving approaches. ^[6]

AI IN FORMULATION DEVELOPMENT

AI has greatly boosted formulation development over the last ten years by replacing conventional trial-and-error techniques with data-driven optimizations. Before conducting laboratory trials, researchers can now effectively evaluate a large number of possible excipients and active pharmaceutical ingredient combinations, anticipating their compatibility and improving formulation parameters. Using molecular and historical data, machine learning models—such as random forests, SVMs, and deep neural networks—effectively predict crucial formulation characteristics like solubility and dissolution rates, enabling quick prototyping and lowering manufacturing costs. By using techniques like Bayesian optimization to find the best combinations that maximize drug absorption and stability while reducing side effects, AI also improves excipient selection through empirical screening. Reinforcement learning is also being researched as a way to further improve formulation processes by adaptively updating development plans based on real-time data. ^[2]

By establishing virtual screening environments, AI-driven technologies in *in silico*-DoE reduce the requirement for high-throughput experiments and enable focused study on potential formulations for validation. ^[7] In accordance with quality by design (QbD) principles, this integration improves formulation workflow speed, accuracy, and precision. AI also helps evaluate medication release kinetics and encapsulation efficiency on sophisticated platforms such as liposomes and lipid nanoparticles. Predictive accuracy in liposomal compositions has significantly increased thanks to supervised machine learning. Autonomous labs that use robots, automation, and LIMS to optimize experimental procedures with little human intervention are where AI in drug formulation is headed.

Predictive Modeling of Drug Properties

AI-based prognostic modeling can greatly improve pharmaceutical formulation by analyzing massive datasets to extract important physicochemical characteristics, such as stability and solubility. When it comes to forecasting drug candidate behaviors, sophisticated models like SVMs, RF classifiers, and ANNs perform better than conventional QSAR techniques. AI facilitates the early identification of formulation risks, streamlines the identification of lead compounds, and optimizes dosage forms by using generative models for efficient screening. Additionally, automated formulation refinement is made possible by combining predictive modeling with high-throughput experimentation, opening the door for self-learning labs and adaptive platforms. ^[8, 9]

Excipient Selection and Optimization

In order to ensure stability, solubility, manufacturability, bioavailability, and patient acceptance in medication formulation, excipient selection is essential. This approach, which has historically relied on pharmacopeia guidelines and experience screening, can be ineffective and may not take into consideration intricate interactions between excipients and active pharmaceutical ingredients (APIs). AI provides a methodical solution by recommending the best excipient combinations by evaluating cheminformatics, material characteristics, and historical formulation data. Regression models can forecast optimal excipient ratios for desired therapeutic performance metrics, whereas supervised learning algorithms can categorize excipients according to API compatibility.

When it comes to fine-tuning excipient concentrations, iterative optimization approaches like Bayesian optimization (BO) and reinforcement learning (RL) are becoming more and more popular since they offer more reliable predictions than conventional Design of Experiments (DoE). AI techniques capture intricate interactions between excipients and active pharmaceutical ingredients

(APIs) and react dynamically. Neural networks can help identify excipients that reduce deterioration by predicting excipient-API interactions under different situations. Additionally, new excipients are designed using generative models to improve solubility and controlled release. Additionally, the formulation process is streamlined by AI-driven platforms in conjunction with high-throughput experiments and robotics, which produce a large number of formulations every day and adjust forecasts based on real-time data. By customizing excipient selections to each patient's demands, this self-learning technology enables precision medicine while cutting down on development time and expenses. ^[10, 11]

AI in Novel Drug Delivery Systems

Although liposomes are adaptable carriers for a variety of compounds, their manufacturing is complicated by lipid types and drug characteristics. To attain desired qualities, traditional formulation optimization uses a lot of trial-and-error. By analyzing inputs and forecasting results, AI techniques simplify this process and lessen the workload associated with experiments. While Deep Learning (DL) models evaluate high-dimensional data to precisely forecast liposome size distributions, Machine Learning (ML) methods like Support Vector Machines (SVMs) and Random Forests (RF) enhance encapsulation efficiency estimates based on formulation variables. Control of pharmacokinetic and pharmacodynamic effects is improved by this prediction ability. ^[12, 13]

Lipid-to-drug interactions, drug partitioning in lipid bilayers, and the impact of cholesterol on bilayer stiffness and drug release profiles are all made possible by AI-assisted molecular dynamics (MD) simulations. Recent advances in AI-based MD have enabled automated liposome formulation through reinforcement learning and improved understanding of the release kinetics of anticancer drugs from PEGylated liposomes. ^[14] This method addresses difficulties in clinical transitions by drastically reducing experimental repetitions and guaranteeing formulation reproducibility and scalability. Promising outcomes in encapsulation efficiency and decreased cardiotoxicity have been demonstrated by applications in liposomal drug delivery system optimization, such as doxorubicin and paclitaxel formulations. AI developments are simplifying medicine formulations and accelerating their clinical application.

DOSE DETERMINATION AND PRECISION DOSING

In pharmaceutical practice, precise dosage calculation is essential since mistakes might result in toxicity, poor patient adherence, or ineffective treatment. Dosage calculations, which were previously relied on well-established formulas and clinician expertise, are now improved by computational systems that make use of several data streams, such as medication interactions, genetics, and demography. This development facilitates the transition from universal guidelines to precision medicine by enabling AI to customize dosage for specific individuals.

Personalized Dosage

By taking into account variables like age, body surface area, renal and hepatic function, and genetic polymorphisms like CYP450 variations, AI algorithms—including ANNs and BO models—are used to customize medication dosage. ML models help modify chemotherapy dosages in cancer treatment to reduce toxicity while maintaining effectiveness. Furthermore, warfarin's limited therapeutic index and patient variability are addressed by AI models to optimize loading and maintenance doses. ^[15]

Adaptive Dosing Using Real-Time Monitoring

Using wearable sensors, continuous glucose monitors, and intelligent infusion pumps to offer real-time pharmacokinetic/pharmacodynamic (PD/PK) data, adaptive dosing systems dynamically modify prescriptions. Insulin dosing in closed-loop systems, such as the "artificial pancreas," which maintains near-normoglycemia and minimizes hypoglycemic episodes, is an example of how AI algorithms evaluate this data for automatic dosage finalization. Adaptive dosing models are now being developed for other drug classes where therapeutic drug monitoring (TDM) is crucial, such as immunosuppressants and antibiotics. ^[16]

Drug–Drug and Drug–Disease Interaction Predictions

By combining electronic health records (EHRs), genomes, and literature data to evaluate drug interactions, artificial intelligence (AI) systems improve safer dosing regimes in polypharmacy. Hospitalizations and adverse drug events are common outcomes of drug-drug interactions (DDIs) and drug-disease interactions (DDzIs), which pose serious clinical problems. Conventional techniques for detecting DDIs, like in vitro research and market surveillance, are reactive and insufficient in complicated circumstances. By mining massive databases and identifying nonlinear links using models that take into account chemical structure, gene expression, and clinical records, artificial intelligence (AI) transforms prediction. ^[17, 18]

Novel DDIs can be found using techniques like graph neural networks and knowledge graph approaches, which frequently reveal interactions missed by traditional pharmacovigilance. Additionally, multi-task learning frameworks allow the simultaneous prediction of many adverse endpoints, which is critical in polypharmacy situations like oncology or geriatrics. AI also predicts clinical outcomes, such as hepatotoxicity or lack of therapeutic impact.

Comorbidities can affect the safety and effectiveness of DDzIs, such as β -blockers causing asthma or NSAIDs aggravating kidney disease or peptic ulcers. AI systems can determine how illness conditions affect pharmacokinetics and pharmacodynamics (PK/PD) by using empirical data.^[19] By anticipating advantageous DDzIs, ML models also help with drug repurposing, especially when it comes to anti-diabetic medications and neurodegenerative diseases. AI-driven DDI and DDzI predictions are increasingly integrated into advanced clinical decision support systems (CDSS), which provide recommendations for dose modifications and alternative therapy depending on patient comorbidities. This breakthrough reduces the strain for medical personnel while enhancing patient safety and supporting efforts in precision medicine.

AI IN QUALITY CONTROL AND REGULATORY COMPLIANCE

Due to labor-intensive processes that are prone to human error, the pharmaceutical sector, which is strictly regulated to guarantee drug quality and safety, faces difficulties. AI technology integration increases productivity and compliance with rules like GMP and FDA 21 CFR Part 11. AI supports real-time release testing by enabling automated verification, intelligent documentation, and predictive quality testing, which lowers errors and speeds up audits. AI improves regulatory interactions and internal quality assurance through the use of machine learning, natural language processing, and big data analytics.^[20]

Documentation and Audit Trails

By improving traceability and adhering to Good Manufacturing Practices (GMP), NLP technology simplifies regulatory documentation in the pharmaceutical sector. In order to maintain data integrity, it supports essential documentation and audit trails. In accordance with ALCOA+ principles, AI systems may automate the complete audit trail procedure, guaranteeing compliance. Predictive auditing finds compliance trends before inspections, and NLP techniques make it possible to analyze production data and reports to find inconsistencies. Furthermore, cloud-based AI complies with FDA digital transformation criteria by enabling safe data management and remote audits.^[21, 22]

Verify Automated Calculation

By identifying and verifying these computations to reduce human error, AI systems improve formulation and dose-related computations in pharmaceutical manufacturing. They lower the dangers connected with manual operations by enabling precise dose and enhancing consistency. While machine learning (ML) finds anomalies in manufacturing records, these systems—including rule-based AI engines—help with computations like potency adjustments and dilution factors. In the end, AI reduces losses and risks associated with patient safety, regulatory concerns, and product recalls.^[23, 24]

Monitoring Real-Time Release Testing

By leveraging in-line process data to forecast critical quality attributes (CQAs), AI improves real-time release testing (RTRT) and enables quicker batch releases. While AI-driven RTRT uses multivariate models with sensor data and process analytical technology (PAT) to guarantee continuous quality assurance, traditional quality testing is slow and may overlook batch variability. These developments support quality by design (QbD) and are in compliance with ICH Q8–Q11 principles. The advantages of RTRT with verified AI systems are being acknowledged by regulatory agencies like the FDA and EMA. RTRT integration helps anticipate shelf-life stability, which offers further regulatory and economic benefits, in addition to accelerating product launches, eliminating delays, and cutting costs.^[25, 26]

CHALLENGES AND LIMITATIONS IN AI USAGE

AI has the potential to revolutionize pharmaceutical calculations and drug development, but its implementation is hampered by issues like data accessibility, model interpretability, regulatory barriers, and infrastructural limitations. The safe, moral, and efficient application of AI in the medical and pharmaceutical sciences depends on resolving these problems.

Interpretability and Transparency

The interpretability of AI models is limited by their black-box character, which presents difficulties for clinical trust and regulatory approval. Particularly in pharmaceutical applications like dosage calculation, intense learning networks are frequently criticized for

their opaque prediction process. Techniques like explainable AI (XAI), such as SHAP and LIME, are being investigated to improve transparency. However, striking a balance between interpretability and prediction accuracy is still a major difficulty since ambiguous explanations could cause AI suggestions to be disregarded in clinical and regulatory decisions. [27, 28]

Data Quality and Availability

To guarantee accuracy and usability, AI models need broad, high-quality datasets. Dataset robustness in pharmaceutical sciences is hampered by problems including small sample sizes, heterogeneity, and proprietary limitations. AI predictions may be impacted by biased or inadequate clinical data. For example, negative instances are frequently absent from drug-drug interaction (DDI) databases, which affects predictive ability. Standardized data formats, excellent annotations, and cooperative data-sharing programs like the FDA's Sentinel Initiative are crucial to addressing these issues. [29, 30]

Regulatory and Ethical Issues

Unlearn's AI-driven approach for more effective clinical trials was acknowledged by the European Medicines Agency (EMA) in 2022. The FDA has not yet approved any AI model for dosage or formulation in pharmaceutical applications, nevertheless. Although it does not guarantee product approval, this qualification shows regulatory confidence. Although AI is becoming more widely accepted in software-as-medical devices, it is still difficult to connect its use with FDA, EMA, and ICH standards, which raises concerns about data privacy, informed consent, and liability. There are not enough updates in the current rules to support the validation of developing machine learning algorithms. Attention must also be paid to ethical issues like algorithmic bias and fair access, especially when it comes to the representativeness of training datasets. Comprehensive rules are still being developed, despite regulatory initiatives like the FDA's 2023 AI/ML framework. [20, 31, 32]

Infrastructure and Skill Gaps

Particularly in underdeveloped nations, the application of AI in medicines is hampered by issues including a lack of computational infrastructure and expertise. It may be challenging for small and medium-sized businesses to make the large investments in technology and secure data storage that are required. There is a skills gap between AI specialists and pharmaceutical scientists, which calls for cross-functional cooperation and training. Dosage accuracy is impacted by the majority of current AI algorithms' reliance on biased datasets that lack demographic diversity. More representative training data and the usage of federated learning frameworks for cooperative model training while protecting patient data are required to address this. [33, 34]

CONCLUSIONS

Through machine learning (ML), deep learning (DL), and predictive modeling, artificial intelligence (AI) is revolutionizing pharmaceutical sciences by improving drug formulation and dose estimates. In order to address applications such as drug-to-excipient compatibility and quality control, it allows researchers to evaluate massive datasets and create optimum formulations. Data quality, algorithm interpretability, regulatory compliance, and ethical concerns are still obstacles. Good training data is necessary for robust AI models; biases can lead to predictions that are off and have major clinical ramifications. Furthermore, technologists, pharmaceutical scientists, and legislators must work together as regulatory frameworks for AI in medication research are continually being revised.

There are a lot of prospects when AI is integrated with blockchain, IoT, quantum computing, and 3D printing, particularly in adaptive clinical trials and tailored medications. AI can improve precision medicine, save costs, and improve patient outcomes by facilitating drug repurposing and real-time outcome monitoring. To ensure safe and efficient AI implementation, computational scientists, pharmacists, doctors, and regulatory specialists must collaborate across academic boundaries. AI has the potential to revolutionize the pharmaceutical sector and provide patient-centered, cutting-edge healthcare if obstacles are overcome.

REFERENCES

1. Wang, S.; Di, J.; Wang, D.; Dai, X.; Hua, Y.; Gao, X.; Zheng, A.; Gao, J. State-of-the-Art Review of Artificial Neural Networks to Predict, Characterize and Optimize Pharmaceutical Formulation. *Pharmaceutics* 2022, 14, 183.
2. Mak, K.K.; Pichika, M.R. Artificial intelligence in drug development: Present status and future prospects. *Drug Discov. Today* 2019, 24, 773–780.
3. Shen, L.; Hu, M.; Xu, X.; Zhou, Y.; Wu, W.; Ge, X.; Wang, G.; Wang, Y.; Li, Z. Precision dosing of voriconazole in immunocompromised children under 2 years: Integrated machine learning and population pharmacokinetic modeling. *Front. Pharmacol.* 2025, 16, 1671652.
4. Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. *N. Engl. J. Med.* 2019, 380, 1347–1358.

5. Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K. Opportunities and obstacles for deep learning in biology and medicine. *J. R. Soc. Interface* 2018, 15, 20170387.
6. Liu, X.; Faes, L.; Kale, A.U. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: A systematic review and meta-analysis. *Lancet Digit. Health* 2019, 1, e271–e297.
7. Macarron, R.; Banks, M.N.; Bojanic, D.; Burns, D.J.; Cirovic, D.A.; Garyantes, T.; Green, D.V.S.; Hertzberg, R.P.; Janzen, W.P.; Paslay, J.W.; et al. Impact of high-throughput screening in biomedical research. *Nat. Rev. Drug Discov.* 2011, 10, 188–195.
8. Bhatarai, B.; Walters, W.P. AI approaches for solubility prediction. *J. Chem. Inf. Model.* 2015, 55, 866–874.
9. Tawari, A.; Scott, J. Machine learning models for predicting solubility of drug-like molecules. *J. Cheminformatics* 2020, 12, 72.
10. Frazier, P.I. A tutorial on Bayesian optimization. *arXiv* 2018, arXiv:1807.02811.
11. Momeni, M.; Afkanpour, M.; Rakhshani, S.; Mehrabian, A.; Tabesh, H. A prediction model based on artificial intelligence techniques for disintegration time and hardness of fast disintegrating tablets in pre-formulation tests. *BMC Med. Inform. Decis. Mak.* 2024, 24, 88.
12. Joshi, S.; Bawage, S.; Tiwari, P.; Kirby, D.; Perrie, Y.; Dennis, V.; Singh, S.R. Liposomes: A promising carrier for respiratory syncytial virus therapeutics. *Expert. Opin. Drug Deliv.* 2019, 16, 969–980.
13. Ramezanpour, M.; Leung, S.S.Y.; Delgado-Magnero, K.H.; Basheti, I.A.; Chung, R. Artificial intelligence in liposome formulation: Support vector machine modeling of encapsulation efficiency. *J. Control Release* 2016, 226, 332–341.
14. Marrink, S.J.; Corradi, V.; Souza, P.C.T.; Ingólfsson, H.I.; Tielemans, D.P.; Sansom, M.S.P. Computational modeling of realistic cell membranes. *Chem. Rev.* 2019, 119, 6184–6226.
15. Kourou, K.; Exarchos, T.P.; Exarchos, K.P.; Karamouzis, M.V.; Fotiadis, D.I. Machine learning applications in cancer prognosis and prediction. *Comput. Struct. Biotechnol. J.* 2015, 13, 8–17.
16. Boughton, C.K.; Hovorka, R. Is an artificial pancreas (closed-loop system) for type 1 diabetes effective? *Diabet. Med.* 2019, 36, 279–286.
17. Zitnik, M.; Agrawal, M.; Leskovec, J. Modeling polypharmacy side effects with graph convolutional networks. *Bioinformatics* 2018, 34, i457–i466.
18. Wang, Q.; Sun, B.; Yi, Y.; Velkov, T.; Shen, J.; Dai, C.; Jiang, H. Progress of AI-Driven Drug-Target Interaction Prediction and Lead Optimization. *Int. J. Mol. Sci.* 2025, 26, 37.
19. Vilar, S.; Friedman, C.; Hripcak, G. Detection of drug–drug interactions through data mining studies using clinical sources, scientific literature and social media. *Brief. Bioinform.* 2018, 19, 863–877.
20. US Food and Administration. Artificial Intelligence and Machine Learning in Drug Development: Guidance for Industry; US Food and Drug Administration: Silver Spring, MD, USA, 2023.
21. Miner, G.; Delen, D.; Elder, J. Practical Text Mining and Statistical Analysis for Non-Structured Text Data Applications; Academic Press: Cambridge, MA, USA, 2012.
22. Dakhole, M.R.; Thombre, K.R.; Gupta, K.R.; Umekar, M.J. Ensuring data integrity in the pharmaceutical lifecycle: Challenges, principles, and global implications. *Ann. Pharm. Fr.* 2025.
23. Lee, S.L.; O'Connor, T.F.; Yang, X.; Cruz, C.N.; Chatterjee, S.; Madurawe, R.D.; Moore, C.M.V.; Yu, L.X.; Woodcock, J. Modernizing Pharmaceutical Manufacturing: From Batch to Continuous Production. *J. Pharm. Innov.* 2015, 10, 191–199.
24. Doshi, P. Role of AI in pharmaceutical quality assurance. *J. Pharm. Sci.* 2021, 110, 1648–1658.
25. Sultan, T.; Rozin, E.H.; Paul, S.; Tseng, Y.C.; Dave, V.S.; Cetinkaya, C. Machine learning modeling for ultrasonic quality attribute assessment of pharmaceutical tablets for continuous manufacturing and real-time release testing. *Int. J. Pharm.* 2024, 655, 124049.
26. Yu, L.X. Real-time release testing and AI integration. *Pharm. Technol.* 2022, 46, 24–33.
27. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. *Nat. Mach. Intell.* 2019, 1, 206–215.
28. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. *Adv. Neural Inf. Process. Syst.* 2017, 30, 4765–4774.
29. Beam, A.L.; Kohane, I.S. Big data and machine learning in health care. *JAMA* 2018, 319, 1317–1318.
30. Ball, R.; Robb, M.; Anderson, S.; Pan, G.D. The FDA's Sentinel Initiative—A comprehensive approach to medical product surveillance. *Clin. Pharmacol. Ther.* 2016, 99, 265–268.
31. European Medicines Agency. Qualification Opinion for PROCOVATM: An AI-Based Approach for Prognostic Covariate Adjustment in Clinical Trials; European Medicines Agency: Amsterdam, The Netherlands, 2022.
32. Gerke, S.; Minssen, T.; Cohen, I.G. Ethical and legal challenges of AI in healthcare. *Sci. Transl. Med.* 2020, 12, 295–336.
33. Shah, P.; Kendall, F.; Khozin, S.; Goosen, R.; Hu, J.; Laramie, J.; Ringel, M.; Schork, N. Artificial intelligence and machine learning in clinical development: A translational perspective. *NPJ Digit. Med.* 2019, 2, 69.
34. Rajkomar, A.; Hardt, M.; Howell, M.D.; Corrado, G.; Chin, M.H. Ensuring fairness in machine learning to advance health equity. *Ann. Intern. Med.* 2018, 169, 866–872.

How to cite this article:

Netaji D et al. Ijppr.Human, 2026; Vol. 32 (1): 320-326.

Conflict of Interest Statement: All authors have nothing else to disclose.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.